國立成功大學

統計學系

品管實務期末報告

量測系統分析 - Kid-O餅乾之重量

Gauge Repeatability and Reproducibility Analysis- Weights of Kid-O

組別成員:陳楚瑜、李承恩、翁萃瑩

指導教授:潘浙楠 教授

中華民國一百零六年一月

目錄

第一	章	緒論	. 1
	1.1	研究動機與目的	.1
	1.2	餅乾量測之要因分析圖	.1
第二	章	分析方法介紹	.2
	2.1	ANOVA	.2
	2.2	Classical Gauge Repeatablitiy and Reproducibility Study	.3
	2.3	計量管制圖	.5
第三	章	實驗規劃	.6
	3.1	產品介紹	.6
	3.2	實驗器材介紹	.6
	3.3	實驗流程	.7
第四	章	資料分析	.8
	4.1	基本統計量	.8
	4.2	Xbar - R Chart	.9
	4.3	Gauge R&R Analysis(ANOVA Method)1	0
	4.4	P/T ratio & SNR1	1
第五	章	結論1	2
參考	文獻.	1	2
附給		1	2

第一章 緒論

1.1 研究動機與目的

近年來,品質管制在食品業越來越顯重要,除了層出不窮的食品安全問題,使得食安逐漸受到大家的重視,產品的品質若是穩定,也能鞏固一間公司的信譽和商標,對此除了消費者有所警覺,製造商方面大多也積極增強相關管制和提供多樣證明,來提升自己的可信度。

我們選擇的日清奶油三明治,是許多人從小吃到大且愛不釋手的餅乾,它對我們來說是一種童年回憶,而台灣的代理商也表明了其內部品管的嚴格,對此,我們希望檢測這項大家所熟知且有感情的產品,其製程能力和變異是否真的合乎預期。

1.2 餅乾量測之要因分析圖

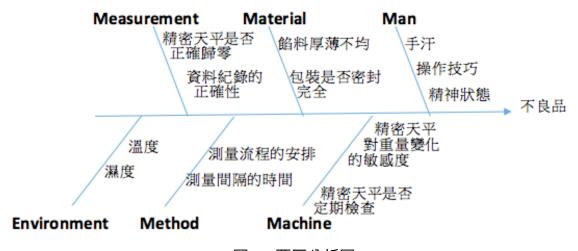


圖1.1 要因分析圖

第二章 資料分析方法介紹

2.1 ANOVA

此方法是在相同量測條件之控制下,所設計的二因子實驗設計,其中一個因子為量 測人員,另一個為產品,皆採隨機效果。

變異數分析模型如下:

$$y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$
 (means model)

$$= \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$
 (effects model)

$$= \mu + A_i + B_j + (AB)_{ij} + \varepsilon_{ijk}$$

$$i = 1, 2, ..., n \cdot j = 1, 2, ..., p \cdot k = 1, 2, ..., k$$

 μ :量測平均值,Ai:產品之效應,Bj:量測人員之效應,(AB)ij:產品及量測人員交互作用效應, ϵiik :重複量測之效應。

將量測數據採變異數分析法可得 ANOVA 表,如下表示:

變異來源	平方和	自由度	均方和	
Parts	SSA	n-1	MSA	
Operators	SSB	p-1	MSB	
Parts*Operatos	SSAB	(n-1)*(p-1)	MSAB	
Error	SSE	np(k-1)	MSE	
Total	SST	npk-1		

表 2.1 二因子之變異數分析表(含交互作用項)

由表 2.1 可求得各變異來源之估計變異項,如下所示:

$$\begin{split} &\sigma_{\text{Repeatability}}^{2}\text{=}\text{MS}_{\text{Repeatability}}\\ &\sigma_{\text{Operators}}^{2}\text{=}\frac{\text{MS}_{\text{Operators}}-\text{MS}_{\text{Repeatability}}}{n^{*}p}\\ &\sigma_{\text{Parts}}^{2}\text{=}\frac{\text{MS}_{\text{Parts}}-\text{MS}_{\text{Repeatability}}}{o^{*}n} \end{split}$$

2.2 Classical Gauge Repeatablity and Reproducibility Study

一、量測系統分析

藉由量測人員使用量具及依照量測方法所獲得數據資料之精確性,將影響進一步資料分析的準確性,因此,需先進行量測系統分析 (Measurement System Analysis, MSA),MSA即是要評估影響量測品質的可能因素,例如量測方法、量測人員、量測工具等,使量測系統在可接受範圍內。具體而言,MSA主要在評估量具的準確度與精密度是否符合需求。

- 1. 精密度 (Precision): 儀器對同一件產品重複量測時,其重複量測結果之差異程度,差異值愈小,則此量測儀器愈精密。
- 2. 準確度 (Accuracy): 量測儀器對同一件產品作一連串的重複量測時,其量測平均值與 該產品真值之間的誤差程度,誤差值愈小,則此儀器愈準確。

此兩種指標可以下圖之靶紙為例說明如下:

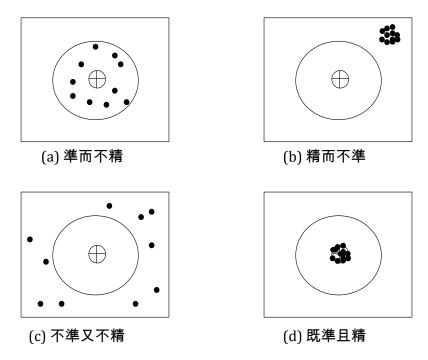


圖2.1 準確度標靶示意圖

準確度與精密度之概念

對量測而言,量測數據應具備準確度與精密度兩種性質,即圖 (d) 之情形。一旦出現圖 (c) 現象,則量測儀器與量測者均有問題,宜迅速檢討改進,否則錯誤之數據會導致錯誤之決策;若出現圖 (a) 之現象,則多半表示量測者技術有待加強;若出現圖 (b) 之現象,則顯示量測儀器已產生偏差,雖量測者技術純熟,但量測結果不正確,需進行量測儀器之校正。

量測系統的準確性可分為偏移、穩定性與線性分析三種,量測系統的精密性可分為再現性與再生性分析兩種,若同時進行兩種分析,稱為量具再現性與再生性 (Gage Repeatability and Reproducibility,GR&R) 分析。因此MSA可用量測的偏移、線性、穩定性、再現性及再生性等5種特性來檢視。

二、量測系統的準確性

1. 偏移 (Bias)

量測值與理論值或真值之間的差距,此差距若夠小,常可忽略。但若此一差距大到會影響判定,則該量測系統就應予以校正或補正。校正係指將量測系統加以調整,使量測值與理論值或真值一致,若量測系統無法校正或校正成本過高,此時就應建立補正值。

2. 線性 (Linearity)

在一連續量測區間內,從小到大進行多次量測後,若將量測結果繪製於以量測值為 橫軸、理論值或真值為縱軸的座標圖上,理想的結果是這些點會形成一條與橫軸成45度角 的直線。

3. 穩定性 (Stability)

量測系統在某持續時間內測量同一基準或零件的單一特性時,所產生不同的平均量測數據之差異,通常是因量具的磨損、量具未維護及定期校正等因素所造成的,差異愈小,則穩定性愈佳。

三、量測系統的精密性

再現性 (Repeatability)

同一量測人員使用同一量具,量測零件上所指定特性數次,所得量測值之變異。量 測系統的變異來源很多,但最主要的是來自於隨機誤差與人員造成的誤差兩種。量測系統 的再現性代表量測結果來自於隨機誤差的變異,一般表示為。為估計此一變異,普遍的作 法是將量測過程中的所有條件 (例如人員或產品等) 予以固定不變,只由某一位作業人 員,針對某一項產品的某一種特性進行多次重複量測,最後以量測結果的估計。

一般常會先以管制圖檢視製程是否仍存在其他變異來源,如果其他變異存在,管制圖會出現異常,當剔除掉量測異常點,製程呈現無其他變異來源時,就可以或作為。 精密度與允差比 (Precision-to-Tolerance Ratio,P/T) 是衡量量測系統能力的常用標準,其計算方式如下公式所示。

當只考慮量測系統的再現性時,。若 P/T < 0.1,表示該量測系統的能力是可以被接受的。若0.1≦P/T≦0.3,對於一般量測,現有系統可能適合使用,但對於關鍵的量測,現有量測系統可能不適合。若 P/T > 0.3,則該量測系統不應被接受使用。

2.3 計量管制圖

平均數與全距管制圖(Xbar - R Chart)是最常被應用在品質管制上的管制圖之一。其中包含分析品質特性集中趨勢變化的平均數管制圖,以及分析品質特性中趨勢變化的全距管制圖,其基本假設為品質特性來自於常態分佈。又 Xbar - R Chart 的合適製程為可以用以管制分組的計量數據,也就是每次實驗時可以取得數個數據的過程。

第三章 實驗規劃

3.1 產品介紹

● Kid-O 68包一箱(取34包測量)

● 購買地點:台南市Costco好市多

●餅乾產品規格:18.68±0.93公克

圖3.1 Kid-O餅乾

3.2 量測器具

1. 工統實驗室的精密天秤

可自動偵測零點、水平位置及溫度,並自動顯示校正程序且原裝玻璃防風罩,並具無軌式設計,操作簡便,不留灰塵。

圖3.2 精密天秤

- 2. 工統實驗室的花崗岩平台
- 高度測量的基準面:將待測物與量錶座同置於平臺上,進行高度比較測量,最後可再將其高 度與標準塊規相比較。

- ●劃線的基準面:可接工作圖的尺寸,進行劃線工作。
- 平行度測量的基準面:固定量錶座,然後使量錶指針接觸在待測物表面上方,移動待測物,可 檢查工件面與平板面的平行度。
- ●角度測量的基準面:利用平板作基準面,配合正弦桿及角度規,可進行角度量測。

3.3 實驗流程

●時間:時間:2016年12月23號星期五中午12點至下午2點

● 地點:國立成功大學統計學系工業統計與品質實驗室

● 實驗步驟:

- 1. 暖機精密天平30分鐘
- 2. 使用minitab建立隨機的GRR工作表
- 3. 確認精密天平是否水平(花崗岩平台)
- 4. 使用砝碼校正
- 5. 依照工作表內的順序來量測(重複兩次)
- 6. 進行資料分析

圖3.3 小組成員:翁萃瑩

圖3.4 小組成員: 陳楚瑜

圖3.5 小組成員:李承恩

第四章 資料分析

4.1 基本統計量

產品規格: 18.68±0.93公克,超出產品規格下限的百分比為約26.47%。

此表為量測後所求得餅乾重量之基本統計量。

Kid-O 餅乾	Total Count	Mean	Variance	StdDev
重量(g)	204	17.94	0.116	0.344

表4.1 重量之基本統計量

此為將所有量測資料(204筆)所計算出的結果,其中,平均數為17.94標準差為0.3447

以下直方圖為以其中一位量測員的某一次重複為示範的直方圖,可以看到大致上其資料分布接近常態。

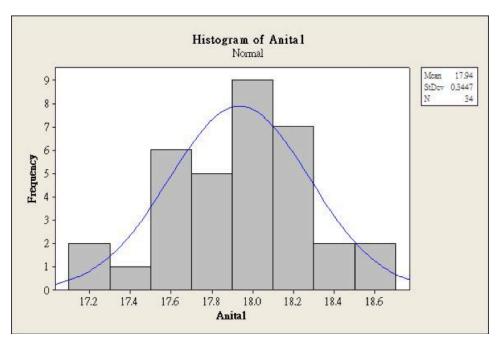


圖4.1 量測者量測值直方圖

4.2 Xbar - R Chart

平均數與全距管制圖是計量管制圖中,經常被廣泛應用之分析方法。除了可以監控製程平均值變化之狀況,也可以以全距管制圖監控變異的變化情形。

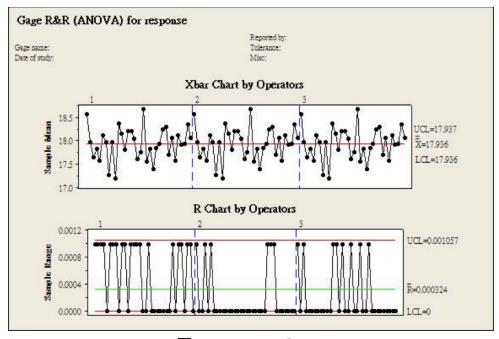


圖4.2 Xbar - R Chart

此圖為三位量測員的X-R管制圖。此X-R管制圖分為三段:第一段-翁萃瑩、第二段 -李承恩、第三段-陳楚瑜,由此圖可以觀察到,沒有特別凸出R管制圖的點,所有測量點 皆在管制圖內。而因為沒有凸出管制圖的點,因此我們直接進入到量測變異分析部分。

另一方面,由於本實驗之測量儀器-精密天平較為精準,平均數管制圖中,所有觀察點都在管制界限外,由此可知,大部分的變異皆來自產品本身。

4.3 Gauge R&R Analysis(ANOVA Method)

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
Parts	33	23.5421	0.713398	6294359	0.000
Operators	2	0.0000	0.000000	1	0.444
Parts * Operators	66	0.0000	0.000000	1	0.939
Repeatability	102	0.0000	0.000000		
Total	203	23.5422			

表4.2 ANOVA Table With Interaction

Two-Way ANOVA Table Without Interaction

Source	DF	SS	MS	F	Р
Parts	33	23.5421	0.713398	4997870	0.000
Operators	2	0.0000	0.000000	1	0.522
Repeatability	168	0.0000	0.000000		
Total	203	23.5422			

表4.3 ANOVA Table Without Interaction

由此ANAOVA表可以看出,人員因子,或是其和產品的交互作用,其顯著性分別 為0.444及0.939表示皆不顯著,這個結果和管制圖顯現的結果一致。

Gauge R&R

Source	VarComp	%Contribution (of VarComp)	
Total Gage R&R	0.000000	0.00	
Repeatability	0.000000	0.00	
Reproducibility	0.000000	0.00	
Operators	0.000000	0.00	
Part-To-Part	0.118900	100.00	
Total Variation	0.118900	100.00	

表4.4 Gauge R&R Table

由此表顯示,本量測實驗的所有變異皆來自產品本身,人員和量測儀器的變異非常小。

Source	StdDev (SD)	Study Var (6xSD)	Study Var (%SV)	
Total Gage R&R	0.000378	0.00227	0.11	
Repeatability	0.000378	0.00227	0.11	
Reproducibility	0.000000	0.00000	0.00	
Operators	0.000000	0.00000	0.00	
Part-To-Part	0.344818	2.06891	100.00	
Total Variation	0.344818	2.06891	100.00	

Number of Distinct Categories = 1286

而根據AIAG定義,鑑別度指標需要大於5,量測系統才能用來分析製程,本實驗的NDC為1286,遠大於5,表示量測系統狀況良好。

4.4 P/T ratio

本產品有標示其規格。其產品規格為18.68±0.93 公克因此我們可以計算其P/T ratio 來評量量測系統的能力,其公式為:,而由前述的介紹,我們知道一個量測系統,其若 P/T<0.1,表示該量測系統的能力是可以被接受的。若0.1≦P/T≦0.3,對於一般量測,現有系統可能適合使用,但對於關鍵的量測,現有量測系統可能不適合。若 P/T>0.3,則該量測系統不應被接受使用。

在我們這個量測實驗中,我們量測的標準差為0,所以我們的P/T值也為0,本量測 系統的能力是可以接受的。

第五章 結論

分別根據管制圖、ANOVA分析和GRR分析,我們可以得到以下結果:管制圖顯示並沒有離群值存在,ANOVA分析呈現僅有產品本身的變異顯著,而從GRR分析也可得知,在量測總變異中,再現性和重複性的變異都佔了極小的比例(幾乎為0),換言之,量測總變異幾乎就等於產品本身的變異,且從NDC及P/T ratio結果,顯示此量測系統精密度及準確度皆適宜,因此我們可以相信這次的測量結果。

另一方面,在產品解釋上,因為產品外包裝標示了其規格,因此經過計算我們發現: 這次隨機挑選進行測量的34個Kid-O餅乾中,雖然平均重量在規格範圍內,但卻有約莫 26.47%的餅乾落在規格下限外,也許是因為我們剛好挑到比較輕的一批貨,又或是該產 品重量本就不符合外包裝上所標示之規格,但無論如何,對此我們合理懷疑該代理商的品 管並不如聲稱的好。

參考文獻

潘浙楠(2009), "品質管理:理論與實務"(第二版), 華泰書局

附錄

此表格為三位量測員對餅乾重量進行兩次測量

	Anita1	Anita2	Thor1	Thor2	Aaron1	Aaron2
Kid-O1	18.576	18.577	18.576	18.577	18.576	18.577
Kid-O2	17.978	17.979	17.979	17.979	17.979	17.979
Kid-O3	17.650	17.650	17.650	17.651	17.650	17.651
Kid-O4	17.831	17.832	17.831	17.832	17.831	17.831
Kid-O5	17.573	17.573	17.573	17.573	17.573	17.573
Kid-O6	18.115	18.116	18.115	18.116	18.115	18.115
Kid-O7	17.971	17.972	17.972	17.972	17.972	17.972
Kid-O8	17.255	17.255	17.255	17.256	17.255	17.255
Kid-O9	17.974	17.974	17.974	17.974	17.974	17.974
Kid-O10	17.184	17.185	17.185	17.185	17.185	17.185
Kid-O11	18.373	18.373	18.373	18.374	18.373	18.373
Kid-O12	18.152	18.152	18.152	18.152	18.152	18.152
Kid-O13	17.813	17.813	17.813	17.814	17.813	17.814
Kid-014	18.204	18.205	18.204	18.205	18.205	18.205
Kid-O15	18.208	18.209	18.209	18.209	18.209	18.209
Kid-O16	18.047	18.048	18.047	18.048	18.048	18.048
Kid-017	17.617	17.617	17.617	17.617	17.617	17.617
Kid-O18	17.760	17.760	17.760	17.760	17.760	17.760
Kid-O19	18.684	18.685	18.684	18.685	18.685	18.685
Kid-O20	17.561	17.561	17.561	17.561	17.561	17.561
Kid-O21	17.831	17.831	17.831	17.831	17.831	17.831
Kid-O22	17.393	17.393	17.392	17.393	17.393	17.393
Kid-O23	17.838	17.838	17.838	17.838	17.838	17.838
Kid-O24	17.943	17.943	17.943	17.943	17.943	17.943
Kid-O25	18.250	18.249	18.249	18.250	18.250	18.250
Kid-O26	18.295	18.294	18.295	18.295	18.295	18.295
Kid-O27	17.695	17.694	17.695	17.696	17.695	17.695
Kid-O28	18.067	18.067	18.067	18.067	18.067	18.067
Kid-O29	17.578	17.578	17.578	17.579	17.578	17.578
Kid-O30	18.126	18.126	18.126	18.127	18.126	18.126
Kid-O31	17.917	17.917	17.917	17.917	17.917	17.917
Kid-O32	17.944	17.944	17.944	17.945	17.944	17.944
Kid-O33	18.360	18.361	18.361	18.361	18.361	18.361
Kid-O34	18.061	18.061	18.061	18.061	18.061	18.061