CAT－100 Catapult Demonstration

The CAT－100 catapult has six different factors，each of which can be set at three different levels．They are：

Factor （因子）	Factor Name （因子名稱）	Level （水準）
A	A：Upright Arm Tension Location （垂直手臂拉力）	1：Low level，2：Medium level，3：High level （1：低水準，2：中水準，3：高水準）
B	B：Projector Elevation （投射高度）	1：Low level，2：Medium level，3：High level （1：低水準，2：中水準，3：高水準）
C	C：Turn Table Position （旋轉盤高度）	1：Low level，2：Medium level，3：High level （1：低水準，2：中水準，3：高水準）
D	D：Pivot Arm Tension Location （中樞手臂拉力）	1：Low level，2：Medium level，3：High level （1：低水準，2：中水準，3：高水準）
E	E：Ball Seat Position （球座位置）	1：Low level，2：Medium level，3：High level （1：低水準，2：中水準，3：高水準）
F	F：Ball Type （球種類）	1：Foam（yellow），2：Whiffle（white），3：PingPong（orange） （1：黃色球，2：白色球，3：橘色球）

To test each factor at each level would require a full factorial experiment consisting of 729 different treatment combinations $\left(3^{6}=729\right)$. If the experiment is conducted only using the Level I and II the experiment is reduced to $2^{6}=64$ treatment combinations. This is still a large experiment, hence the need to develop some sort of fractional experiment or Taguchi orthogonal array. (from http://www.qualitytng.com/shop/?page=shop/catdemo)

Different types of fractional factorials can be developed based on the instructor's preferences. The following example is for a one-eighth $\left(2^{6-3}\right)$ fractional factorial with two replications of each treatment. The response variable is the distance the ball is thrown in inches.

Run Order	A	B	C	D	E	F	Response
	Upright Arm Tension Location	Projector Elevation	Turn Table	Pivot Arm	Ball Seat	Ball Type	Distance
1	1	1	2	2	1	1	
2	2	1	2	1	2	1	
3	1	1	1	2	2	2	
4	1	2	2	1	1	2	
5	1	2	1	1	2	1	
6	1	2	1	1	2	1	
7	1	1	1	2	2	2	
8	2	1	1	1	1	2	
9	2	2	2	2	2	2	
10	2	2	1	2	1	1	
11	2	2	2	2	2	2	
12	2	1	2	1	2	1	
13	1	1	2	2	1	1	
14	2	2	1	2	1	1	
15	1	2	2	1	1	2	
16	2	1	1	1	1	2	

Other Designs

Full Factorial Design	Factors	Level	Replicates	Runs
2^{3}	3 (A, D, C)	2	2	16
2^{4}	4 (A, D, E, C)	2	1	16
2^{4}	4 (A, D, E, C)	2	2	32

Fractional Factorial Design		Factors	Level	Replicates	Runs
$2^{6-3}(1 / 8$ fraction $)$	6 (A, B, C, D, E, F)	2	2	16	
$2^{6-2}(1 / 4$ fraction $)$	6 (A, B, C, D, E, F)	2	2	32	
$2^{5-1}(1 / 2$ fraction $)$	5 (A, B, C, D, E)	2	2	32	

