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New Capability Indices for Evaluating the
Performance of Multivariate Manufacturing
Processes
Jeh-Nan Pana and Chun-Yi Leeb∗†

Generally, an industrial product has more than one quality characteristic. In order to establish performance measures for
evaluating the capability of a multivariate manufacturing process, several multivariate process capability indices have
been developed in the past few years. Among them, Taam’s MCp and MCpm indices have the drawback of overestimation
and Hubele’s three-component capability vector lacks simplicity in practice. In this article, taking the correlation among
multiple quality characteristics into account, we develop two novel indices; NMCp and NMCpm. Using two numerical
examples we demonstrate that the true performance of multivariate processes are accurately reflected in our NMCp and
NMCpm indices and in their associated interval estimates. Finally, simulation results show that our indices outperform
both those of Taam and Hubele. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

Good quality products are the key to success in business. With the advent of modern technology, manufacturing processes have
become very sophisticated; a single quality characteristic can no longer reflect a product’s quality. For example, stencil printing
is one of the most cost-effective processes for solder paste deposition and it has been widely used in traditional high-volume

surface mount assembly (Pan et al.1). The need for higher pin count, higher performance, smaller size and lighter weight has driven
the development of advanced packaging such as quad flat package (QFP), ball grid array, chip scale package and flip chip. In the
solder paste stencil printing process, solder deposited volume, area and height are the three quality characteristics and there is a high
correlation among them.

To establish performance measures for evaluating the capability of a multivariate manufacturing process, several multivariate
process capability indices have been developed based on the further extensions from the univariate domain Unfortunately, the
engineering tolerance region in a multivariate case is not simply represented by end points on a number line.The actual process
region is not a straightforward function of the process standard deviation (Chan et al.2). Thus, one of the major problems in developing
multivariate process capability indices is to establish an engineering tolerance region and a process region. It has been argued that
the three-component capability vector proposed by Hubele et al.3 lacks simplicity and could be confusing in its interpretation and
use. On the other hand, the indices proposed by Taam et al.4 do not take into account the correlation between multiple quality
characteristics. In this article, we seek to resolve both these issues.

2. Literature review

In the past univariate process capability indices have been used to measure the process performance. Various multivariate statis-
tical methods are now employed when quality characteristics are interdependent or correlated. Wang and Chen5 simplified the
computation of multivariate process capability by using principal component analysis. Chan et al.2 proposed a multivariate process
capability index C˜pm using the concept of Mahalanobis distance. Chen6 proposed a general multivariate capability index that allows

aDepartment of Statistics, National Cheng Kung University, Tainan, Taiwan
bDepartment of Applied Mathematics, National Chiayi University, Chiayi, Taiwan
∗Correspondence to: Chun-Yi Lee, Department of Applied Mathematics, National Chiayi University, Chiayi, Taiwan.
†E-mail: cylee@stat.ncku.edu.tw

Contract/grant sponsor: National Science Council of Taiwan

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 3--15

3



J.-N. PAN AND C.-Y. LEE

elliptical and rectangular specifications. Foster et al.7 later proposed a new multivariate capability index using a process-oriented basis
representation.

Viewing the multivariate process capability indices as an extension of the univariate concept, Hubele et al.3 proposed a composite
measure for process capability based on two quality characteristics. Their three-component capability vector is defined as

[
CpM, PV, LI

]
,

where the first component of the capability vector, CpM as shown in Equation (1), is a ratio of areas or volumes analogous to the ratio
of lengths of the univariate Cp index. The numerator of Equation (1) is the volume of an engineering tolerance region, whereas the
denominator is the volume of a modified process region

CpM =
(

v∑
i=1

(USLi −LSLi)

/
v∑

i=1
(UPLi −LPLi)

)1/v

(1)

where USLi is the upper specification limit for the ith quality characteristic, LSLi is the lower specification limit for the ith quality
characteristic, UPLi and LPLi are the upper and lower specification limits of a modified process region for the ith quality characteristic,
respectively and v is the number of quality characteristics. The second component PV of the capability vector, as shown in Equation (2),
measures the closeness of the process mean to the target.

PV =Pr

[
T2 >

v(n−1)

n−v
F(v,n−v)

]
(2)

where T2 =n(X̄−T)′S−1(X̄−T), T is the target vector, X̄ is the sample mean vector, S is the sample covariance matrix, n is the sample
size and F(v,n−v) is the F distribution with v and n−v degrees of freedom. The third component of the capability vector LI compares
the modified process region with the engineering tolerance region. It indicates whether the modified process region falls outside the
engineering tolerance region. When the entire modified process region falls within the engineering tolerance region, LI is equal to 1.
Otherwise, 0 is assigned to LI.

Taam et al.4 proposed two multivariate process indices MCp and MCpm. Their multivariate process capability index MCpm is defined
as the ratio of two volumes, i.e.

MCpm = vol.(R1)

vol.(R2)
(3)

where R1 is a modified engineering tolerance region (see Figure 1) and R2 is a scaled 99.73% process region, which is an elliptical
region if the underlying process distribution is assumed to be multivariate normal. Moreover, the modified engineering tolerance
region is the largest ellipsoid that is centered at the target and falls within the original engineering tolerance region. Thus, the MCpm
index can be rewritten as

MCpm =MCp
1

D
(4)

where D= (1+(l−T)′R−1(l−T))1/2 is a correcting factor if the process mean is deviated from the target and the MCp index represents
the ratio of a modified tolerance region with respect to the process variability as written in the following equation:

MCp =

(
v∏

i=q
ri

)
�v/2[�(v / 2)+1]−1

|R|1/2(�K(v))v/2[�(v / 2)+1]−1
(5)

where ri = (USLi −LSLi) / 2, i=1,. . . , v, |·| is a notation of determinant and �(·) is a Gamma function.
Wang et al.8 reviewed the three multivariate process capability indices proposed by Hubele et al.3, Taam et al.4 and Chen6. They

pointed out that Hubele’s three-component capability vector lacks simplicity and could be confusing in its interpretation and use.
Although Taam’s MCpm index accurately reflects process variability and centeredness, it does not take into account the correlation
between multiple quality characteristics. We seek to resolve these issues. In Section 2, we show that it would be more appropriate to
revise Taam’s modified engineering tolerance region by considering the correlation of multiple quality characteristics.

Engineering Tolerance Region 

Modified Engineering Tolerance Region 

LSL1 USL1

LSL2 

USL2 

Figure 1. Illustration of engineering tolerance region and modified engineering tolerance region
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3. Modification of the existing multivariate process indices

Assuming the manufacturing process follows a multivariate normal distribution, the MCp index will be equal to 1 if the manufacturing
process region falls completely within an engineering tolerance region. In Appendix A, we prove that the calculation of the MCp index
proposed by Taam et al.4 can be simplified to

MCp =|q|−1/2 (6)

where q is a correlation matrix. Equation (6) implies that the value of MCp index may be greater than 1 since the value of the determinant
of a correlation matrix is between 0 and 1. In other words, the value of MCp index will be greater than 1 if the quality characteristics
are not independent, which causes an overestimation of the true process performance. Similarly, the MCpm =MCp / D index proposed
by Taam et al.4 has the same drawback as the MCp index when the multiple quality characteristics are not independent. Thus, we
revise Taam’s modified engineering tolerance region based on the assumption that the correlation of multiple quality characteristics
is consistent with the correlation among specifications. The relationship between Taam’s modified engineering tolerance region
(the regular one) and our revised engineering tolerance region (the slant one) for a process with a bivariate quality characteristic is
illustrated in Figure 2.

To overcome the drawback of overestimation using the MCp and MCpm indices, a revised engineering tolerance region is proposed
as below

Ed,A∗ ,T ={X∈Rv|(X−T)′(A∗)−1(X−T)=d2} (7)

where the elements of matrix A∗ are given by

�ij

(
USLi −LSLi

2d

)(
USLj −LSLj

2d

)
, i, j =1,. . . , v (8)

where T is the target vector, �ij represents the correlation coefficient between the ith and jth quality characteristics and (USLi −LSLi)
denotes the ith specification width for each side of the rectangle circumscribed to the ellipsoid Ed,A∗ ,T. Similar to the MCpm ratio of
the two volumes shown in Equation (3), our proposed multivariate process capability index can be defined as

NMCpm = Vol.(Ed,A∗ ,T)

Vol.(Ed,R,l)
(1+(l−T)′R−1(l−T))−1/2 (9)

If d2 =�2
1−�,v , then the NMCpm index can be written as

NMCpm =
|A∗|1/2(��2

1−�,v)v/2
[
�
( v

2
+1
)]−1

|R|1/2(��2
1−�,v)v/2

[
�
( v

2
+1
)]−1 (1+(l−T)′R−1(l−T))−1/2 =NMCp / D (10)

where NMCp = (|A∗| / |R|)1/2 and D= (1+(l−T)′R−1(l−T))1/2. The term D in Equation (10) denotes a function of Mahalanobis
distance between the process mean and target vector T. It can be used to measure the process deviation from target vector T. Note
that Cp and Cpm can be considered as a special case of NMCp and NMCpm if v =1 and 1−�=0.9973. Thus, the NMCp index can be
used to evaluate the performance of process precision (i.e. the variability in relationship to the revised engineering tolerance region)
and the NMCpm index can be used to evaluate both process precision and accuracy (i.e. the deviation from the target). Given a random
sample of n measurements with v quality characteristics (i.e. X1,. . . , Xn) from a multivariate manufacturing process, an estimator for
our NMCp index can be written as

̂NMCp =
( |A∗|

|S|
)1/2

(11)

Revised Engineering Tolerance Region

Engineering Tolerance Region 

Modified Engineering Tolerance Region 

LSL1 USL1

LSL2 

USL2 

Figure 2. Relationship between Taam’s modified region and our revised engineering tolerance region
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where S= (n−1)−1∑n
i=1(Xi −X̄)(Xi −X̄)′ and X̄=n−1∑n

i=1 Xi represent the sample covariance matrix and the sample mean

vector, respectively. Furthermore, the rth moment of ̂NMCp can be derived as

1

br
(NMCp)r (12)

where

br =
(

2

n−1

)rv/2 v∏
i=1

(
�((n− i) / 2)

�((n− i−r) / 2)

)
(see Appendix B for details). Then, the expected value and variance of ̂NMCpm can be written as

E(̂NMCp) = 1

b1
NMCp

Var(̂NMCp) =
(

1

b2
− 1

b2
1

)
(NMCp)2

Note that ̂NMCp is a biased estimator and b1̂NMCp is an unbiased estimator of the NMCp index. Similarly, the estimator of the NMCp
index can be written as

̂NMCpm =
( |A∗|

|S∗|
)1/2

where S∗ = (n−1)−1∑n
i=1(Xi −T)(Xi −T)′. Furthermore, the rth moment of ̂NMCpm can be derived as

1

b∗
r

(NMCpm)r

where

b∗
r =
(

2v−1

(n−1)v(1+� / n)

)r/2

e�/2

(
∞∑

j=0

(� / 2)j�((n+2j−r) / 2)

j!�((n+2j) / 2)

)−1
v−1∏
i=1

(
�((n− i) / 2)

�((n− i−r) / 2)

)
(see Appendix B for details). Then, the expected value and variance of ̂NMCpm can be written as:

E(̂NMCpm) = 1

b∗
1

NMCpm

Var(̂NMCpm) =
(

1

b∗
2

− 1

(b∗
1)2

)
(NMCpm)2

Apparently, ̂NMCpm is a biased estimator and b∗
1
̂NMCpm is an unbiased estimator of the NMCpm index.

Based on the sampling distributions of ̂NMCp and ̂NMCpm, we further prove that the 100(1−�)% confidence interval for the NMCp
index is [

̂NMCp
√

w�/2, ̂NMCp
√

w1−�/2

]
(13)

and the 100(1−�)% confidence interval for the NMCpm index is⎡⎣̂NMCpm

√
w∗

�/2

1+� / n
, ̂NMCpm

√
w∗

1−�/2

1+� / n

⎤⎦
where w� and w∗

� are the � percentiles of
∏v

i=1 �2
n−i / (n−1)v and �2

n(�)
∏v−1

i=1 �2
n−i / (n−1)v distributions, respectively (see Appendix

C for details). Note that �2
n−i , i=1,. . . , v, are independent Chi-square distributions with (n− i) degrees of freedom, �2

n(�) is a non-

central Chi-square distribution with n degrees of freedom and the non-centrality parameter �=n(l−T)′R−1(l−T). Since � is usually

unknown and it can be estimated by �̂=n(X̄−T)′S−1(X̄−T), an approximate 100(1−�)% confidence interval for the NMCpm index
can be written as ⎡⎣̂NMCpm

√
w∗

�/2

1+ �̂ / n
, ̂NMCpm

√
w∗

1−�/2

1+ �̂ / n

⎤⎦ (14)

The above interval estimation for a multivariate capability index provides a range of plausible values for an estimate that accounts
for sampling error.
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4. Comparison of various multivariate process capability indices

Our simulation study compares the performance of our two multivariate process capability indices with the three multivariate process
capability indices proposed by Chan et al.2, Hubele et al.3 and Taam et al.4. The specifications and the target values for a hypothetical
bivariate process are listed in Table I.

According to Equation (8), the matrix A∗ for process I is given by

[
1 �

� 1

]

where � is the correlation coefficient between two quality characteristics X1 and X2. Assuming that the hypothetical bivariate
process I follows a multivariate normal distribution with mean vector l′ = [0 0] and covariance matrix R=A∗, a 99.73% process
region E�2

0.9973,2 ,R,l={X∈R2|(X−l)′R−1(X−l)=�2
0.9973,2} and a 99.73% revised engineering tolerance region E�2

0.9973,2 ,A∗ ,T ={X∈
R2|(X−T)′(A∗)−1(X−T)=�2

0.9973,2} are equivalent. Thus, the value of multivariate process capability index should be nearly equal
to 1 when the process mean is equal to the target. After conducting 10 000 times simulation, the computation results of various
multivariate process capability indices for different combinations of sample size (n) and correlation coefficient (�) are summarized in
Table II. Note that we assume that Chan’s tolerance ellipsoid is equivalent to the modified engineering tolerance region used in the
MCpm index since Chan et al.2 did not show how to convert structure matrix from an engineering tolerance region.

Apparently, it is unreasonable to use Chan’s Ĉp̃m index as its values are significantly greater than 1. The simulation results further

reveal that the multivariate process capability is overestimated by Taam’s M̂Cp and M̂Cpm indices since their indices increase as the

correlation of quality characteristic increases. In contrast, the two novel ̂NMCp and ̂NMCpm indices fall within the neighborhood of 1

for different correlation coefficients when the sample size (n) is greater than 30. Therefore, our proposed ̂NMCp and ̂NMCpm indices are
more appropriate than Taam’s M̂Cp and M̂Cpm indices since they are robust to the change in the correlation coefficients. Furthermore,
all the values of the first and second components of Hubele’s index are close to 1 and 0.5 for different correlation coefficients. These
simulation results indicate that the first and second components (ĈpM and PV) of Hubele’s index are appropriate to evaluate the
performance of a multivariate manufacturing process. According to Equation (A2), the lower and upper process limits of a modified

process region proposed by Hubele et al.3 can be expressed as UPLi =�i +
√

�2
i �2

1−�,v and LPLi =�i −
√

�2
i �2

1−�,v , where �2
i , i=1,. . . , v,

is the variance of ith quality characteristics. Thus, we can further show that the relationship between the CpM index and the NMCp

Table I. The specifications and target values for a hypothetical bivariate process I

Quality characteristic Target USL LSL

X1 0 3.4393 −3.4393
X2 0 3.4393 −3.4393

Table II. The simulation results of various capability indices for different combinations of
sample size (n) and correlation coefficient (�)

Hubele’s index Chan’s index Taam’s indices Our proposed indices

� n ĈpM PV LI Ĉp̃m M̂Cp M̂Cpm ̂NMCp ̂NMCpm

0.1 30 1.0227 0.4957 0.2171 3.4846 1.0798 1.0413 1.0556 1.0180
50 1.0132 0.5023 0.2095 3.4665 1.0481 1.0263 1.0321 1.0107

100 1.0070 0.4927 0.2031 3.4541 1.0273 1.0166 1.0169 1.0062

0.5 30 1.0226 0.5021 0.2514 3.4927 1.2406 1.1964 1.0576 1.0200
50 1.0123 0.5039 0.2354 3.4677 1.2015 1.1767 1.0314 1.0101

100 1.0065 0.4965 0.2399 3.4546 1.1784 1.1661 1.0164 1.0058

0.9 30 1.0272 0.5007 0.3452 3.5224 2.4641 2.3759 1.0733 1.0348
50 1.0141 0.4966 0.3317 3.4825 2.3945 2.3440 1.0384 1.0165

100 1.0068 0.4962 0.3245 3.4607 2.3392 2.3151 1.0184 1.0079
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index is given by

CpM =
(

v∏
i=1

(USLi −LSLi)

/
v∏

i=1
(UPLi −LPLi)

)1/v

=
(

v∏
i=1

(USLi −LSLi)

/(
2
√

�2
1−�,v

v∏
i=1

�i

))1/v

= (|A∗| / |R|)1/2v

= (NMCp)1/v (15)

Table III. The mean vectors and covariance matrices of four hypothetical bivariate processes

Hypothetical bivariate processes

II III IV V

Mean vector (l)

[
0

0

] [
0

0

]
R1/2

[
1

1

]
R1/2

[
1

1

]

Covariance matrix (R)

[
1

√
2�√

2� 2

] [
2 2�

2� 2

] [
1 �

� 1

] [
2 2�

2� 2

]

Figure 3. The simulation results of various multivariate process capability indices for different correlation coefficients (�) under processes II, III, IV and V
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Although Hubele’s CpM index is based on the ratio of two volumes of rectangular regions and our NMCp index is based on the ratio of
two volumes of ellipsoids, it is found that both the CpM and NMCp indices can provide the same information relating to the process
precision.

To compare the performance of multivariate process capability indices, we consider four hypothetical bivariate processes II, III,
IV and V as listed in Table III. Note that the target values and specifications of four hypothetical processes are the same as those of
process I (see Table I for details).

In Table III, process II represents the variation of one quality characteristic, which is greater than 1, process III represents the
variations of two quality characteristics, which are greater than 1, process IV represents the process mean vector that is deviated from
the target vector and process V represents both the variations of two quality characteristics, which are greater than 1 and where the
process mean vector is deviated from the target vector, respectively. Moreover, Mahalanobis distances between the target vector and
the process mean vector are equal to 2 for processes IV and V. After conducting 10 000 times simulation, the computation results
of various multivariate process capability indices (n=30) for processes II, III, IV and V under different correlation coefficient (�) are
illustrated in Figure 3(a–d), respectively. Figure 3(a–d) shows that the true capability of a multivariate manufacturing process cannot
be correctly reflected by Taam’s M̂Cp and M̂Cpm indices since the process capability will be overestimated as the correlation of quality

characteristics increases. In contrast, all the values of our ̂NMCp index in Figure 3(a–d) are either less than or close to 1 for different

correlation coefficients and all the values of our ̂NMCpm index in Figure 3(a–d) are less than 1, which indicate that the process precision

and accuracy can be correctly reflected by the ̂NMCp and ̂NMCpm indices.
Therefore, our proposed NMCp and NMCpm indices are more appropriate than Taam’s MCp and MCpm indices for evaluating the

performance of multivariate manufacturing processes. Moreover, all the values of the three components of Hubele’s index [ĈpM, PV, LI]
in Figure 3(a–d) are less than or close to 1, 0.5, 0 and 0, respectively. It indicates that Hubele’s index is also suitable to evaluating the
performance of multivariate manufacturing processes. Notice that all the values of the second component (PV) of Hubele’s index in
Figure 3(c) and (d) and the third component (LI) of Hubele’s index in Figure 3(a–d) are close to 0.

5. Numerical examples

Example 1
Sultan9 discussed an example in which the Brinell hardness (H) and tensile strength (S) are two quality characteristics of an industrial
product. The engineering tolerances for H and S are given by (112.7, 241.3) and (32.7, 73.3), respectively, and the target vector of
H and S is T′ = [177, 53]. After collecting 25 measurements as listed in Table IV, a multivariate process capability study is conducted
(assuming that the process is in control).

By performing Shapiro–Wilk test, we found that the 25 collected measurements follow a multivariate normal distribution with the
sample mean vector X̄′ = [177.2, 52.316] and the sample covariance matrix S, where

S=
[

338 88.8925

88.8925 33.6247

]

Then, the matrix A∗ can be obtained as below

A∗ =
[

349.52131 92.01022

92.01022 34.83724

]

The actual relationship among the 99.73% process region, 99.73% revised engineering tolerance region and the engineering tolerance
region is illustrated in Figure 4.

Apparently, the process mean is close to the target and the ‘99.73% process region’ is approximately equal to the ‘99.73% revised
engineering tolerance region’. The comparison results of using various multivariate process indices for estimating the performance of

Table IV. The 25 measurements of Brinell hardness (H) and tensile strength (S) for an
industrial product

H S H S H S

143 34.2 141 47.3 178 50.9
200 57.0 175 57.3 196 57.9
168 47.5 187 58.5 160 45.5
181 53.4 187 58.2 183 53.9
148 47.8 186 57.0 179 51.2
178 51.5 172 49.4 194 57.5
162 45.9 182 57.2 181 55.6
215 59.1 177 50.6
161 48.4 204 55.1

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 3--15
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Figure 4. Relationship among 99.73% revised engineering tolerance region, 99.73% process region and engineering
tolerance region in Example 1. This figure is available in colour online at www.interscience.wiley.com/journal/qre

Table V. Comparison of various multivariate process indices for Example 1

Hubele’s index Taam’s indices Our proposed indices

ĈpM PV LI M̂Cp M̂Cpm ̂NMCp ̂NMCpm

1.02 0.54 1 1.88 1.83 1.04 1.01

Table VI. The specifications and target values for QFP4 mil,30 process

Quality characteristic Target USL LSL

Deposited volume 0.0787 0.10250 0.0549
Deposited area 0.7870 0.96870 0.6052
Deposited height 0.1000 0.12765 0.07235

an industrial product are summarized in Table V. Since the estimated conforming rate for this example is 99.91% under the assumption

of multivariate normality for the underlying process distribution and both our proposed indices ̂NMCp =1.04 and ̂NMCpm =1.01 are
nearly equal to 1, which indicates that the 99.73% process region is close to the 99.73% revised engineering tolerance region and
the process mean is close to the target (see Figure 4). By Equations (13) and (14), the 95% confidence intervals for the NMCp and
NMCpm indices are [0.63, 1.44] and [0.63, 1.41], respectively. Thus, the true process performance can be correctly reflected by our

proposed indices ̂NMCp and ̂NMCpm, i.e. the process is capable. Whereas, the process capability is overestimated by Taam’s two indices
M̂Cp =1.88 and M̂Cpm =1.83 since the correlation among multiple quality characteristics is not taken into account. In this example,

the process capability can also be reflected by Hubele’s index since
[

ĈpM, PV, LI
]
= [1.02, 0.54, 1] indicates that the modified process

region is close to the engineering tolerance region, the process mean is near to the target value and the modified process region falls
within the engineering tolerance region, respectively.

Example 2
The stencil used in the solder paste stencil printing process (see introduction) is laser-cut from stainless steel and there are two
kinds of stencil thickness, 0.1 mm (4 mil) and 0.15 mm (6 mil). Both the stencils have the same pattern and there are five different
aperture sizes, i.e. 30, 25, 20, 16 and 12 (unit: 1 mil=0.0254 mm). In this example, we consider a QFP4 mil,30 process, where QFP4 mil,30
represents the stencil thickness as 4 mil and aperture size as 30. The specifications and target values for QFP4 mil,30 process are listed
in Table VI.

Based on the 150 measurements provided by Pan et al.1, we found that they follow a multivariate normal distribution with the
sample mean vector X̄′ = [0.0786, 0.7871, 0.1000] and the sample covariance matrix S, where

S=

⎡⎢⎢⎣
0.0000354 0.0001074 0.0000326

0.0001074 0.0020648 −0.0000758

0.0000326 −0.0000758 0.0000478

⎤⎥⎥⎦1
0

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 3--15
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Table VII. Comparison of various multivariate process indices for QFP4 mil,30
process

Hubele’s index Taam’s indices Our proposed indices

ĈpM PV LI M̂Cp M̂Cpm ̂NMCp ̂NMCpm

1.10 0.00 1 26.39 24.60 1.20 [0.96, 1.42] 1.12 [0.66, 1.47]
Note: Values within brackets represent the interval estimates for our proposed indices.

Then, the matrix A∗ for the revised engineering tolerance region can be obtained as below:

A∗ =

⎡⎢⎢⎣
0.0000400 0.0001215 0.0000369

0.0001215 0.0023335 −0.0000857

0.0000369 −0.0000857 0.0000540

⎤⎥⎥⎦
The comparison results of using various multivariate process indices for estimating the performance of QFP4 mil,30 process are summa-
rized in Table VII.

As the estimated conforming rate for this example is 99.98% under the assumption of multivariate normality and the indices ̂NMCp =
1.20 and ̂NMCpm =1.12, one can conclude that the 99.73% process region is smaller than the 99.73% revised engineering tolerance

region and the process mean is slightly deviated from the target (i.e. D̂= (1+n(n−1)−1(X̄−T)′S−1(X̄−T))1/2 =1.07). Apparently, the

true process performance can be reflected by our proposed indices ̂NMCp and ̂NMCpm, i.e. the process is capable. Moreover, the
sample correlation matrix r for this example is given by

r=

⎡⎢⎢⎣
1 0.3975 0.7934

0.3975 1 −0.2414

0.7434 −0.2414 1

⎤⎥⎥⎦
Whereas, the process capability is overestimated by Taam’s two indices, M̂Cp =26.39 and M̂Cpm =24.60. The consequence of this
overestimation is caused by the high correlation among three multiple quality characteristics (see the above correlation matrix). In this
example, the first component (ĈpM =1.10) of Hubele’s index indicates that the modified process region is smaller than the engineering
tolerance region and the second component (PV =0) of Hubele’s index indicates that the process mean is far away from the target
value. However, the second component (PV) of Hubele’s index is defined as a p-value of the Hotelling T2 statistic for the testing of
H0 :l=T versus Ha :l �=T, where l and T are the process mean vector and the target vector, respectively. An important idea behind
statistical testing and consequently the use of the p-value is that the reference distribution takes into account the sample size. In
essence, we allow the process mean to be further away from the target when the sample size is small, but require it to be closer to the
target when the sample size is large to obtain the same p-value. Thus, PV value of 0.00 in this example indicates that the process mean
is statistically different from the target for such a large sample size (i.e. n=150). As indicated by Wang et al.8, the above interpretation
for the second component (PV) of Hubele’s index may not be easily understood by practitioners who do not have a solid statistical
knowledge.

6. Conclusions and remarks

The distinction among the indices proposed by Hubele et al.3, Taam et al.4 and our proposed capability indices is: (1) the comparison
regions and (2) the algebraic expression used to compute the indices. Hubele et al.3 used multiple-dimensional rectangular regions
to construct three components. The first component, analogous to Cp in higher dimensions, compares the volumes of the multiple-
dimensional rectangular regions. The second component measures the distance between the process mean and the process target
using the T2 statistic and the third component compares the general location of the two multiple-dimensional rectangular regions.
Using ellipsoid-shaped comparison regions (regular ones without taking the correlation among multiple quality characteristics into
account), Taam’s two indices, one analogous to Cp and the other analogous to Cpm from the univariate domain, are generated
from the underlying multivariate normal distribution. Considering the correlation among multiple quality characteristics, we use the
slant ellipsoid-shaped comparison region to develop the two novel capability indices. The simulation results show that our NMCp
and NMCpm indices are more appropriate than Taam’s MCp and MCpm indices since our indices are robust to the change in the
correlation coefficients. Similar to Taam’s MCp and MCpm indices, our proposed NMCp and NMCpm indices can also be viewed as
an extension of the univariate process capability indices Cp and Cpm. Thus, the performance of process precision and accuracy for
a multivariate manufacturing process can easily be understood by using our proposed multivariate process capability indices. Two
numerical examples further demonstrate the usefulness of our proposed NMCp and NMCpm capability indices.

Moreover, it is worthy to note that (1) All the multivariate process capability indices including Taam’s MCp and MCpm, Hubele’s
CpM and PV indices as well as our proposed NMCp and NMCpm indices are based on the assumption of multivariate normality for
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the underlying distribution. Accordingly, any departure from this assumption could lead to erroneous results that include statistical
properties, interval estimates and interpretation of process capability indices. Therefore, it is suggested that the multivariate normality
assumption be checked by performing a statistical test, such as Shapiro–Wilk test prior to the process capability study. (2) Engineering
tolerance zone or the intersection of the specifications would be a rectangular solid since the specifications for a product generally
consist of a collection of individual specifications for each variable (see Jackson10). (3) Although Hubele’s index is also appropriate in
evaluating multivariate process capability, it only focuses on computing and interpreting the point estimates of the desired quantity.
Thus, it is subject to statistical fluctuation. In contrast, our proposed NMCp and NMCpm process capability indices and their associated
interval estimates, which may lead to sample size determination, can serve as a useful reference for quality practitioners.
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Appendix A: Proof of an overestimation for Taam’s MCp and MCpm indices

Suppose that Ed,A,X0
as shown in Equation (A1) is an ellipsoid with center X0 in Rv

Ed,A,X0
={X∈Rv|(X−X0)′A(X−X0)=d2} (A1)

where A is a positive-definite matrix and d is a constant. Then the rectangle circumscribed to the ellipsoid Ed,A,X0
can be defined by

the following inequality:

x0i −
√

d2aii ≤xi ≤x0i +
√

d2aii, i=1,. . . , v (A2)

where aii is the (i, i) element of A−1 and x0i is the ith component of vector X0. The proof is given by Härdle and Simar11.
Since the modified engineering tolerance region proposed by Taam et al.4 is an ellipsoid inscribed to the original engineering

tolerance region and parallel to the coordinate axes, it can be written as

E�2
1−�,v ,RTaam,T ={X∈Rv|(X−T)′R−1

Taam(X−T)=�2
1−�,v}

where T is the target vector, �2
1−�,v is the (1−�)th percentile of a Chi-square distribution with v degrees of freedom and RTaam is a

v×v diagonal matrix with ( USLi −LSLi)
2
/

(2
√

�2
1−�,v)2, i=1,. . . , v elements. According to Equation (A2), it is easy to show that the sides

of engineering tolerance region circumscribed to the ellipsoid E�2
1−�,v ,RTaam,T are (USLi −LSLi), i=1,. . . , v. In other words, the rectangle

circumscribed to the ellipsoid E�2
1−�,v ,RTaam,T is equal to the engineering tolerance region. Thus, the volume of E�2

1−�,v ,RTaam,T can be

written as

|RTaam|1/2(��2
1−�,v)v/2

[
�
( v

2
+1
)]−1 =�v/2

(
v∏

i=1

(USLi −LSLi)

2

)[
�
( v

2
+1
)]−1

(A3)

1
2
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where |·| is a notation of determinant and �(·) is a Gamma function. Suppose that the process measurements follow a multivariate
normal distribution with the mean vector T and a covariance matrix R, which is given by

�ij

⎛⎝USLi −LSLi

2
√

�2
1−�,v

⎞⎠⎛⎝USLj −LSLj

2
√

�2
1−�,v

⎞⎠ , i, j =1,. . . , v

where �ij represents the correlation coefficient between ith and jth quality characteristics. According to Equation (A2), it is easy to
show that the manufacturing process region falls within the engineering tolerance region and the scaled (1−�)% manufacturing
process region is given by

E�2
1−�,v ,R, T ={X∈Rv|(X−T)′R−1(X−T)=�2

1−�,v}

Then, the volume of a scaled (1−�)% manufacturing process region equals

�v/2

(
v∏

i=1

(USLi −LSLi)

2

)[
�
( v

2
+1
)]−1 |q|1/2 (A4)

where q is a correlation matrix with unit diagonal elements and non-diagonal elements �ij . According to Equations (A3) and (A4), the
calculation of MCp index can be simplified by

MCp =|q|−1/2 (A5)

Equation (A5) indicates that the value of MCp index might be greater than 1 (an overestimation occurs) since the value of the
determinant of a correlation matrix is between 0 and 1 (when multiple quality characteristics are independent).

Appendix B: Derivation of the rth moments of N̂MCp and N̂MCpm

Based on the definition of ̂NMCp, the rth moment of ̂NMCp can be written as

E(̂NMCp)r =|A∗|r/2E(|S|−r/2)

According to Maman12, one can obtain

E(|S|)−r/2 =
( |R|

(n−1)v

)−r/2 v∏
i=1

E(�2
n−i)

−r/2

and

E
(
�2

n−i

)−r/2 =2− r/2 �((n− i−r) /2)

�((n− i) /2)

Thus, the rth moment of ̂NMCp can be written as

E(̂NMCp)r = 1

br
(NMCp)r

where

br =
(

2

n−1

)rv/2 v∏
i=1

(
�((n− i) / 2)

�((n− i−r) / 2)

)
Based on the definition of ̂NMCpm, the rth moment of ̂NMCpm can be written as

E(̂NMCpm)r =|A∗|−r/2E(|S∗|−r/2)

By Theorem 3 of Dahel and Giri13, one can obtain

E(|S∗|)−r/2 =
( |R|

(n−1)v

)−r/2
E(�2

n(�))−r/2
v−1∏
i=1

E(�2
n−i)

−r/2

Moreover, �2
n(�) distribution can be written as a mixture of central �2

n+2j distributions with Poisson weights

e−�/2 (� / 2)j

j!
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Then,

E(�2
n(�))−r/2 =e−�/2

∞∑
j=0

(� / 2)j

j!
E(�2

n+2j)
−r/2

(see Pearn et al.14) and the rth moment of ̂NMCpm is given by

E(̂NMCpm)r = 1

b∗
r

(̂NMCpm)r

where

b∗
r =
(

2v−1

(n−1)v(1+� / n)

)r/2

e�/2

(
∞∑

j=0

(� / 2)j�((n+2j−r) / 2)

j!�((n+2j) / 2)

)−1
v−1∏
i=1

(
�((n− i) / 2)

�((n− i−r) / 2)

)

Appendix C: Derivation of the 100(1−a)% confidence intervals for NMCp and NMCpm

According to Maman12, one can obtain that |S| / |R| is the distribution of W =∏v
i=1 �2

n−i / (n−1)v . Based on the definitions of NMCp

and ̂NMCp, the ratio NMCp / ̂NMCp is equal to (|S| / |R|)1/2. Furthermore, we let w� be a constant such that Pr{W >w�}=1−�, then the
following properties hold:

Pr{w�/2 <W <w1−�/2} = 1−�

Pr{w�/2 < |S| / |R|<w1−�/2} = 1−�

Pr{√w�/2 <NMCp / ̂NMCp <
√

w1−�/2} = 1−�

Pr{̂NMCp
√

w�/2 <NMCp <̂NMCp
√

w1−�/2} = 1−�

Hence, a 100(1−�)% confidence interval for the NMCp index is given by

[̂NMCp
√

w�/2, ̂NMCp
√

w1−�/2]

By Theorem 3 of Dahel and Giri13, one can obtain that |S∗| / |R| is the distribution of�2
n(�)

∏v−1
i=1 �2

n−i / (n−1)v . Based on the definitions of

NMCpm and ̂NMCpm, the ratio NMCpm / ̂NMCpm is equal to (|S∗| / |R∗|)1/2. Furthermore, we let w∗
� be a constant such that Pr{W∗ >w∗

� }=
1−�. Then, the following properties hold:

Pr{w∗
�/2 <W∗ <w∗

1−�/2} = 1−�

Pr

{
w∗

�/2

(1+� / n)
<

|S∗|
|R∗| <

w∗
1−�/2

(1+� / n)

}
= 1−�

Pr

⎧⎨⎩
√

w∗
�/2

(1+� / n)
<

NMCpm

̂NMCpm
<

√
w∗

1−�/2

(1+� / n)

⎫⎬⎭= 1−�

Pr

⎧⎨⎩̂NMCpm

√
w∗

�/2

(1+� / n)
<NMCpm <̂NMCpm

√
w∗

1−�/2

(1+� / n)

⎫⎬⎭= 1−�

Hence, a 100(1−�)% confidence interval for the NMCpm index is given by⎡⎣̂NMCpm

√
w∗

�/2

1+� / n
, ̂NMCpm

√
w∗

1−�/2

1+� / n

⎤⎦
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