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This article tests several nonparametric DEA models for their ability to accurately decompose CO2

emissions change using a Malmquist styled decomposition framework. This production oriented

Koopmans Efficient Slacks Based Model. The Latent Variable technology simultaneously reduces inputs

and undesirable outputs in a single Multiple Objective Linear Program. This production theoretic

methodology is adapted to preserve both scale efficiency and causality within the envelopment

framework. Finally, the application studies demonstrate the internal consistency of the Latent Variable

reduction coefficients, which overturns previous results and paves the way for further research into

undesirable externalities.

& 2012 Elsevier Ltd. All rights reserved.
1. Reducing undesirable outputs

Driven by concern for the environment, a preponderance of
articles addressing the reduction of undesirable outputs has been
published in the last decade. In a 2008 survey done by Zhou et al. [1]
72 of 100 articles reviewed were written since 1999. If the output of
undesirable greenhouse gases (GHG) is not drastically reduced in
the following decade, tens of thousands of species could become
extinct due to pollution, rapid climate change and global warming
induced by GHG such as CO2 [2]. The effects on human food security
and other key vulnerabilities may also be devastating: increased
poverty, and deepening economic and political strife. These and
other ‘externalities,’ will need to be taken into account as ‘undesir-
able outputs’ are recognized to be more than just an environmental
concern. This seems to be the direction that DEA is moving as a
multiple input/output system that is not manacled by statistical
distribution or invariance issues. Management scientists have yet to
develop a consistent approach for the measurement of environ-
mental performance using DEA let alone setting up a basis for its
expanded use given other externalities. A variety of methods are
currently used which impose restraints on outputs while often
ignoring production assumptions or causal relationships. Hence,
ll rights reserved.
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we propose the Latent Variable Environmental Model (LVM) to act
as a basis for the consistent simultaneous reduction of inputs and
undesirable outputs as a first step in extending the scope of Data
Envelopment Analysis.

Charnes et al. in 1978 characterized the CCR Model [3] as the
fundamental DEA reference technology in envelopment form for
either an input or output orientation with Constant Returns To
Scale, CRS. Its efficiency measure was radial-based using efficiency
ratios rather than the additive form of the slacks-based approach
that they (Charnes, Cooper with others) would also pioneer in
1985, SBM [4]. The Slacks Based Model is Pareto–Koopmans [5,6]
efficient since it removes undetected slacks from the radial models,
usually in a two-stage process. DMUs on the efficiency frontier
using radial efficiency measures are Farrell efficient [7], but some
DMUs may still have slacks as either input excesses, shortfalls in
output, or both. So although we consider the CRS frontier to dictate
efficiency, it is more effective as a reference.

Though there is no test for the best specification or model in
DEA as noted by Berg in 2010, the slacks-based efficiency measure
displays a higher discriminating power for measuring efficiency and
modeling environmental performance. One aim of this article is to
propose a test method for DEA models in order to show the efficacy
of our proposed technology called the Latent Variable Model. To
clear the way for the introduction of this model the axiomatic
proposition of weak disposability of outputs must be limited in its
application and some misunderstandings in its application resolved.
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It is curious to note that despite its superior performance,
slacks-based efficiency measures were used in only 7% of articles
in the 2008 survey above while only 6% used the VRS reference
technology exclusively. In 1984 with Banker et al. extended the
CRS model to include Variable Returns to Scale, VRS, in their BCC
Model [8]. This more accurately reflects business returns to scale
RTS and the efficiency frontier that they are constrained by.
Whereas the CRS frontier is linear, a straight line (or hyper-line
when multiple inputs and outputs are used), and CRS models tend
to ‘‘linearize’’ efficiency ratios, the VRS frontier is a convex hull
that ‘‘envelops’’ the DMU set. VRS models tend to overstate
efficiency since the VRS frontier is easier to achieve, but they
also contain more DMUs on their frontier than the CRS frontier. As
a result, Variable Returns to Scale give a more accurate and
realistic description of a target unit, DMU0, relative to its peers
in terms of the most achievable RTS reference technology. There-
fore, to develop our Latent Variable Model we use the VRS frontier
as our reference technology.

Though much work characterizes the problem of undesirable
outputs, few studies if any, have actually resolved the problem of
simultaneously reducing inputs and undesirable outputs while
adhering to basic causality in production theory. This study
proposes weak disposability of inputs to serve both purposes.
Thus, we use a Radial Input Reduction Model as our efficiency
measure, which is ‘benchmarked’ against a comparable SB Model.

To expand DEA’s scope of application, this study carefully re-
organizes the postulates necessary for an environmental DEA in
Section 2. Section 2 will also cover the definition and properties of
the Latent Variable model. In Section 3, several models from the
literature will be compared to the LV Model for consistency.
Section 4 presents the first application study as an example of
‘linearization.’ Section 5 applies the Malmquist decomposition to
the OECD CO2 emissions change in order to compare the perfor-
mance of the 7 test models. Section 6 summarizes the findings of
this paper.
2. Reference technology and efficiency measure assumptions

An aggregated production technology with undesirable outputs
can be formulated causally as T ¼ ½ðX,Y ,UÞ : X produces ðY ,UÞ�.
Consider an aggregated production process across world regions
or countries with energy consumption as an aggregate input
vector (Xj), with gross domestic product (Yj) as an aggregate
desirable output, and with aggregate energy-related CO2 emis-
sions (Uj) as an undesirable output vector across j DMUs.
An examination of the data from one period to the next shows that
U and Y do not move proportionally as outputs [9–12] and for some
DMUs they move in opposite directions. In every case, however,
X is the cause for both U and Y. This causality condition is the
foundation of the production process, that is, inputs (or input
mix) create undesirable outputs, and outputs do NOT create
undesirable outputs except possibly in physical state changes in
industrial applications such as petrochemical refineries. Hence, in
this study the weak disposability of inputs is considered rather
than the weak disposability of outputs [13–15], which could be
considered a special case and not relevant to aggregate data. The
dual weak disposability model is explored by Kuosmanen and
Matin [16]; this article employs its envelopment implementation.

2.1. Weak disposable inputs and the latent variable

Latent Variable technology uses a Radial Input Model in
conjunction with weak disposability applied to the aggregate
input vector. This idea was somewhat anticipated by Tone in his
development of his epsilon efficiency measure [17]. He also used
a unit vector in his Stage II slacks model [18] similar to our
benchmark Reverse SBM.

The weak disposability of inputs means that the mix of
aggregate inputs, Xpj, are reduced by the direct input reduction
objective, a as follows:

PJ
j ¼ 1

zjxpj

a0x0
¼ 1 ð1Þ

The input objective Min aunder VRS will make the sum of the
z-weighted reference set in the numerator equal to the input
objective x0, thus weakly disposing of inputs proportionally.

Similarly, the Latent Variable is the natural ratio of the sum of
the z-weighted reference set of aggregate undesirable outputs, urj,
and the reduction target u0 as follows:

PJ
j ¼ 1

zjurj

u0
rl0 ð2Þ

The reduction coefficient, l0, is a latent ratio implied by the linear
programming constraints. The Latent Variable responds to (and thus
can keep track of) the simultaneous reduction of undesirable outputs
as the direct reduction of inputs takes place according to the model
specification. In the case of a reduction LVM, the specification uses
weak disposability of inputs (Min a). On the other hand, to reduce
undesirable outputs directly (Min l) under the assumption of weakly
disposable outputs, as is the case throughout the literature, often
referred to as ‘treating outputs as inputs’ [19] and even touted as an
Environmental Index, ignores the fact that X causes U and that X must
be instrumental in U’s reduction. The question is: do the results of a
Min l model have any meaningful interpretation?

Note that the Latent Variable is the natural ratio of the
undesirable output constraint in the envelopment model. It does
not imply that a new variable has been added to the linear
programming (LP) model. Therefore, Eq. (3) is a valid LP model
and not a Non-Linear Model (NLP). Furthermore, models that
‘treat outputs as inputs’ by directly reducing U also ignore the
effect this has on the Latent Variables within their mis-specified
models. That is, they assume inputs are held constant, but this is
not the case since the inequality on the input constraint will allow
inputs to be reduced! In fact, this anomaly was how the Latent
Variable was discovered. Hence, several practitioners have been
using a ‘mis-specified Latent Variable model’ in their research, but
due to this misunderstanding, have misinterpreted their results!

Let us correctly specify the Latent Variable model now. To
generalize the Latent Variable Input Model suppose two time
periods exist, K and L, and that vectors with P inputs, Q outputs, R

undesirable outputs, and J DMUs are given as shown in Eq. (3).
The equality on the input constraint allows weak disposability of
inputs which implies costs may be involved in reducing inputs
depending on the mix. This mix for the purposes of calculation is
non-separable [9]. The equality here is also similar to the non-
proportional inputs of other non-radial models [20]. The con-
straints are the same as in the standard BCC model, otherwise.

As inputs are directly minimized the value for normal outputs
will remain unchanged unless the linear combination of weights
dictates an increase, which is only possible if the DMU under
consideration is an outlier with very inefficient outputs. Similarly
undesirable outputs will remain unchanged unless the linear
combination of weights dictates a decrease, which is likely for
undesirable outputs since the aggregated data includes a variety
of input mixes and CO2 producing technologies. These inefficien-

cies are captured in the Latent Variable, l, which has the same
range characteristics as other reduction variables. The convexity

constraint ensures Variable Returns to Scale,
PJ

j ¼ 1 zj ¼ 1. Without it,
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the model will generate Constant Returns to Scale, which is a
valuable benchmark for the exploration of Returns to Scale RTS.
The CRS LV Min a model will be used later for this purpose.

Hence, the Latent Variable Input Model is correctly specified as
VRS LV Min a to indicate the direct minimization of the input
vector X on the VRS frontier. Min l envelopment models are mis-
specified because they directly minimize the output vector U.
These designations, Min a and Min l, are used throughout to
indicate proper and improper specifications, respectively

VRS LV Min a :
8DMU:j¼ 1,2,. . .,J; t¼ K ,L
� �
s:t:

XJ

j ¼ 1

zjx
t
pj ¼ axt

p0, p¼ 1,2,. . .,P

XJ

j ¼ 1

zjy
t
qjZyt

q0, q¼ 1,2,. . .,Q

XJ

j ¼ 1

zju
t
rjrlut

r0, r ¼ 1,2,. . .,R

XJ

j ¼ 1

zj ¼ 1

zjZ0

Latent variable 0rl¼

PJ
j ¼ 1

zju
t
rj

ut
p0

r1,

f8 DMU:r¼ 1,2,. . .,R; p¼ 1,2,. . .,Pg ð3Þ
3. Environmental estimation models

Discrepancies tend to accumulate over time and appear con-
cisely in two articles by Zhou et al. [21] and Zhou and Ang [22].
In the first study, they introduce the Pure and Mixed Environ-
mental Index (PEI and MEI) for the CRS, NIRS and VRS with a
Min l envelopment specification. Mixed radial models have been
discussed by Cooper et al. [23], Zhu [19] and others. Zhou, Ang,
and Poh introduce their Mixed Environmental model by combin-
ing PEI model with a feedback coefficient. The feedback condition
setup between the inputs and the weighting sum using the
variable b, tends to shift between frontier types, from NIRS to
CRS to VRS. Their mixed model, shown in Eq. (4), implied the
advantage of ‘scale matching’ in their results, but the model was
not stable under testing due to its Min l specification and b’s
influence on the z-weighting factor. This is an un-natural speci-
fication in DEA that has no justification or interpretation.

NIRS MEI ¼Min l :

s:t:
XJ

J ¼ 1

zjxpjrbxp0, p¼ 1,2,. . .,P

XJ

J ¼ 1

zjyqjZyq0, q¼ 1,2,. . .,Q

XJ

J ¼ 1

zjurj ¼ lur0, r¼ 1,2,. . .,R

XJ

J ¼ 1

zj ¼ b, j¼ 1,2,. . .,J

zjZ0, br1 ð4Þ

Their second study focused on a Malmquist styled decomposi-
tion of CO2 emissions calling for two reduction variables which
they derive from two separate CRS models, one Min a and one
Min l. Designated as the Double CCR model and shown in Eq. (5), it
employs their PEI model with the defects assessed above in CCR1,
and a valid radial input model in CCR2. These independent and
uncorrelated reduction coefficients are then used in a Malmquist
styled decomposition. Their application studies show several infea-
sible points on the Efficient Production Frontier, one ‘linearized’
factor on the frontier, and seven decomposition factors which are
discussed in our application studies

CCR1 ¼ PEI ¼ CRS Min l : CCR2 ¼ CRS Min a :

s:t:
XJ

1

zjxpjrxp0, p¼ 1,2,. . .,P s:t:
XJ

J ¼ 1

zjxpjraxp0

XJ

1

zjyqjZyq0, q¼ 1,2,. . .,Q
XJ

J ¼ 1

zjyqjZyq0

XJ

1

zjurj ¼ lur0, r¼ 1,2,. . .,R,
XJ

J ¼ 1

zjurj ¼ ur0

zjZ0, j¼ 1,2,. . .,J, zjZ0 ð5Þ

Slack based environmental DEA technologies have been widely
studied in the literature [24–31]. The Slacks Based Model (SBM) is
an additive non-radial, non-oriented (neither input nor output
oriented) approach to variable reduction. For inputs and undesir-
able outputs, the slacks model removes excesses s�p and s�r . For
regular outputs it adds shortfalls sþq . By maximizing the excess and
shortfall slacks using an additive objective, the slacks model is the
most discriminating in terms of efficiency. Phase II is applied after
the reduction coefficients have been obtained from a previous
radial or non-radial model. As such, it is more difficult to apply and
appears in less than 5% of studies. Phase II is shown as follows:

SBM Phase II ¼Max
XP

1

st�
p þ

XQ

1

stþ
q þ

XR

1

st�
r

 !
:

f8 DMU:j¼ 1,2,. . .,J; t¼ K ,Lg

s:t:
XJ

1

zjx
t
pjþst�

p ¼ a
nxt

p0, p¼ 1,2,. . .,P

XJ

1

zjy
t
qj�stþ

q ¼ yt
q0, q¼ 1,2,. . .,Q

XJ

1

zju
t
rjþst�

r ¼ lnut
r0, r¼ 1,2,. . .,R

XJ

1

zj ¼ r

zjZ0

For CRS use rZ0

For VRS use r¼ 1

where an and ln are derived from Phase I ð6Þ

In this study, the SBM is our benchmark for comparison since
it exhibits Koopmans Efficiency (KE) rather than the simple Farrell
efficiency exhibited on the frontier. Our benchmark was con-
structed by assuming that all DMUs wind up on the frontier; we
call this Reverse SBM.

Suppose a DMU is on both frontiers, that is an

j ¼ 1 and ln

j ¼ 1.
These reduction coefficient vectors are constructed as a Unit
Vectors and applied to SBM Phase II. Subsequently, the SBM
Phase II model will ‘force’ all the slacks excesses into st�

p and st�
r ,

and all the shortfalls into, stþ
q for each period. Optimal reduction

coefficients are then calculated for each period by removing these
slacks from the data and dividing by the appropriate original
value such that X̂

t

pj ¼ Xt
pj�st�n

pj -ðx̂
t
0=xt

0Þ-at
Optimal or Û

t

rj ¼Ut
rj�

st�n

rj -ðû
t
0=ut

0Þ-lt
Optimal.

So in summary, we have four basic models: our Latent Variable,
the Double CCR, the NIRS Mixed Environmental, and our benchmark
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Reverse SBM. We will test two version of LV: the VRS and CRS; and
we will test two versions of CCR: the original and one using LV but
mis-specified as Min l. As mentioned earlier this mis-specified LV
approach has been unwittingly applied by many researchers. Also
we present the original study results by Zhou and Ang. Our study
uses a sensitive multiplicative decomposition to judge the overall
performance of each technology since no method has yet emerged
in the literature to compare models of this nature.
3.1. CO2 decomposition methods in DEA

The Malmquist Productivity Index [19,32–34] has been used
throughout the literature to evaluate technology change and its
effect on inputs and outputs. It is defined as the maximum factor
by which inputs in one period could be reduced to produce the
same output in a second period. It can be calculated using either
CRS or VRS input technology. Recently it has been used in 26% of
the energy and environmental performance reported in the
survey above. The following articles are of particular relevance:
[21,26,35–37].

Suppose a production technology in period K as reference, then
the functional representation of the reduction coefficient for
Carbon Emissions is lK

j ðX
L
j ,YL

j ,UL
j Þ, where the objective values are

in period L. We state this more concisely by simplifying the
functional notation to lK

j ðU
L
j Þ, which represents the performance

measure for CO2 emissions in period L as calculated with
reference to the technology of period K. Similarly, aK

j ðX
L
j Þ is the

performance measure for Energy Consumption in period L as
calculated with reference to the technology of period K.

In general, the Malmquist Productivity Index (MPI) itself can
be decomposed into two components: Technical Efficiency
change and Efficient Production Frontier shift. We combine our
functional notation for the application study with their MPI
components in Eq. (7). Both the Reduction Objective, a, and the
Latent Variable, l, are reduction coefficients for this decomposi-
tion method. When derived from a single integrated LVM the
reduction coefficients exhibit relative correlation, which in turn
helps to minimize the variance of this model

MPIX ¼
ðaK

j ðX
K
j ÞaL

j ðX
K
j ÞÞ

ðaK
j ðX

L
j ÞaL

j ðX
L
j ÞÞ

 !1=2

¼
aK

j ðX
K
j Þ

aL
j ðX

L
j Þ

 !
ðaL

j ðX
L
j ÞaL

j ðX
K
j ÞÞ

ðaK
j ðX

L
j ÞaK

j ðX
K
j ÞÞ

 !1=2

MPIU ¼
ðlK

j ðU
K
j Þl

L
j ðU

K
j ÞÞ

ðlK
j ðU

L
j Þl

L
j ðU

L
j ÞÞ

 !1=2

¼
lK

j ðU
K
j Þ

lL
j ðU

L
j Þ

 !
ðlL

j ðU
L
j Þl

L
j ðU

K
j ÞÞ

ðlK
j ðU

L
j Þl

K
j ðU

K
j ÞÞ

 !1=2

ð7Þ

Here we refrain from using Shephard [38] input and output
Distance functions (SD) as in Zhou and Ang’s study since these
lead to infeasibility problems on the frontier. To decompose the
change in aggregate CO2 emissions, we start with its essential
form [39]. That is, aggregate CO2 emissions in period L are the
product of Carbon Factor ðUL

j =XL
j Þ, Energy Intensity ðXL

j =YL
j Þ, and

output GDP. The change over two periods is therefore:
DCO2¼DCarbon factor�DEnergy Intensity�DGDP.

The Malmquist Productivity Index in Eq. (7) is applied as a
reciprocal to form the decomposition in Eq. (8). The decomposi-
tion terms of the MPI itself are tagged onto the end of the formula
to balance the inverted ratios. According to Zhou and Ang the first
term is Potential Carbon Factor Change PCFCH followed by
Potential Energy Intensity Change PEICH and GDP change. We
are not sympathetic to these terms, but we use them for
comparison purposes only. Consult Zhou and Ang for the mean-
ings they assign

UL
j

UK
j

¼
ðUL

j =ðl
K
j ðU

K
j Þl

L
j ðU

K
j ÞÞ

1=2
Þ

ðUK
j =ðl

K
j ðU

L
j Þl

L
j ðU

L
j ÞÞ

1=2
Þ

ð1=XL
j Þ

1=XK
j

 !
�
ðXL

j =ðaK
j ðX

K
j ÞaL

j ðX
K
j ÞÞ

1=2
Þ

ðXK
j =ðaK

j ðX
L
j ÞaL

j ðX
L
j ÞÞ

1=2
Þ

ð1=YL
j Þ

ð1=YK
j Þ

 !
YL

j

YK
j

 !

�
lK

j ðU
K
j Þ

lL
j ðU

L
j Þ

 !
lL

j ðU
L
j Þl

L
j ðU

K
j Þ

� �
lK

j ðU
L
j Þl

K
j ðU

K
j Þ

� �
0
@

1
A

1=2

�
aK

j ðX
K
j Þ

aL
j ðX

L
j Þ

 !
ðaL

j ðX
L
j ÞaL

j ðX
K
j ÞÞ

ðaK
j ðX

L
j ÞaK

j ðX
K
j ÞÞ

 !1=2

ð8Þ

The fourth and fifth terms are part of CO2 Emissions Perfor-
mance CEPCH: ‘catch up effect’ of Technical Efficiency Change
called CEEFCH, and ‘frontier shift’ of Carbon Abatement Technol-
ogy CATECH. Analogously, terms six and seven are part of Energy
Usage Performance EUPCH: ‘catch up effect’ of Energy Usage
Technical Efficiency Change EUEFCH, and the ‘frontier shift’ of
Energy Savings Technology ESTECH. The terminology is given
below in two forms for easy cross reference

CO2CHj ¼ PCFCHjUPEICHjUGDPCHjUCEEFCHj

CATECHjUEUEFCHjUESTECHj

DCO2 ¼DP Carbon Factor�DP Energy Intensity�DGDP

�DCarbon TE� DCarbon Shift� DEnergy TE

�DEnergy Shift ð9Þ

Since an increase in one factor must lead to a decrease in
others, the decomposition is a fine proving ground for detecting
model inaccuracies. We refer to this as ‘multiplicative sensitivity.’
4. Application study 1: Infeasible world regions

The data is from Key World Energy Statistics [40]. The data
sets are those used by Zhou and Ang for comparison purposes.
The Double CCR study uses Million Tons of Oil Equivalent (Mtoe)
for primary energy supply. 1995 Billion PPP USD is used for Gross
Domestic Product (GDP) and CO2 emissions from fuel combustion
is measured in million tonnes (Mt). The OECD study uses
Petajoules for primary energy.

The data sets, presented in Tables 1 and 4, are ranked by
relative carbon emissions change. Relative change is the change in
each region or country divided by the total change in the variable
over time, given by

Relative ChangeXJ ¼
ðxL

j�xK
j Þ

ð
Pj

J ¼ 1 xL
j�
Pj

J ¼ 1 xK
j Þ

ð10Þ

We include ranked relative change percentages in the data sets
to indicate the relative scale of changes that will be taken into
consideration within the LP minimization. Thereby outliers and
the spectrum of diversities within the data sets become obvious
and demonstrates the need for a VRS reference frontier.

Based on Zhou and Ang’s decomposition study we compare
results under different conditions and using different models. The
first study adjusts their world regions study using Latent Variable
technology and our hybrid decomposition. This makes the fron-
tier DMUs feasible while identifying unwanted artifact that arises
when the CRS frontier is used as the reference technology.
In Table 2, their original results, note that Latin America has no
feasible values for 4 out of 7 of the decomposition factors, yet this
is the frontier reference DMU. A second problem is obvious in
CATECH where all the values are the same. Because of the
multiplicative sensitivity of the decomposition many of the
subsequent values must be incorrect since they compensate for
the uni-value in CATECH. To investigate these anomalies we
construct an integrated yet mis-specified LVM Min l from their
Double CCR shown in Eq. (5).



Table 2
Original decomposition results.

Source: Zhou and Ang [22].

Region CO2 emissions change and its seven components for world regions, 2002–2004.

CT/C0 PCFCH PEICH GDPCH CEEFCH CATECH EUEFCH ESTECH

OECD 1.0284 1.1281 0.9462 1.1623 1.0016 0.8834 1.0108 0.9268

Middle East 1.0823 1.1220 0.8662 1.2495 0.9805 0.8834 1.1362 0.9056

Former USSR 1.0363 1.2187 0.8086 1.2816 0.9153 0.8834 1.1205 0.9056

Non-OECD Europe 1.0474 1.1093 0.9139 1.1536 1.0278 0.8834 1.0821 0.9116

China 1.4421 1.0314 1.0540 1.3471 1.2118 0.8834 1.0000 0.9198

Asia (exclusive of China) 1.1072 1.1293 0.9579 1.2304 1.0187 0.8834 1.0024 0.9222

Latin America 1.0734 – – 1.2150 1.0000 – 1.0000 –

Africa 1.0956 1.1026 0.9628 1.1965 1.0365 0.8834 1.0189 0.9245

Geometric meana 1.1128 1.1190 0.9271 1.2300 1.0242 0.8834 1.0516 0.9166

a The calculation of the geometric mean excludes the data for Latin America.

Table 3
Regional decomposition results using the latent variable.

Source: Abraham Bretholt.

DMUs Integreated CCR model using latent variable and efficiency scores.

CO2CH PCFCH PEICH GDPCH CEEFCH CATECH EUEFCH ESTECH

OECD 1.028 1.128 1.000 1.162 1.002 0.883 1.000 0.877
Middle East 1.082 1.122 1.000 1.250 0.981 0.883 1.021 0.877
Former USSR 1.036 1.219 1.000 1.282 0.915 0.883 1.042 0.877
Non-OECD Europe 1.047 1.109 1.000 1.154 1.028 0.883 1.000 0.877
China 1.442 1.031 1.000 1.347 1.212 0.883 1.054 0.877
Asia 1.107 1.129 1.000 1.230 1.019 0.883 1.000 0.877
Latin America 1.073 1.068 0.937 1.215 1.000 0.943 1.000 0.937
Africa 1.096 1.103 1.000 1.197 1.036 0.883 1.001 0.877

Geomean 1.108 1.112 0.992 1.228 1.021 0.891 1.015 0.884

Table 1
World regions data set ranked by relative carbon change (%).

Source: Key world energy statistics [40].

World regions 2002 2004 Relative change (%)

X (Mtoe) Y (GDP) U (Mt) X (Mtoe) Y (GDP) U (Mt) X (Mtoe) Y (GDP) U (Mt)

China 1245 5359 3307 1626 7219 4769 46.1 21.0 61.5

OECD 5346 25,375 12,554 5508 29,493 12,911 19.6 46.4 15.0

Asia 1184 5508 2257 1290 6777 2499 12.8 14.3 10.2

Middle East 431 1026 1093 480 1282 1183 5.9 2.9 3.8

Former USSR 931 1552 2232 979 1989 2313 5.8 4.9 3.4

Africa 540 1669 743 586 1997 814 5.6 3.7 3.0

Latin America 455 2567 845 485 3119 907 3.6 6.2 2.6

Non-OECD Europe 100 358 253 104 413 265 0.5 0.6 0.5

Total 10,232 43,414 23,284 11,058 52,289 25,661 100 100 100
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Eq. (11) preserves the fundamental error of Double CCR:
‘treating outputs as inputs’ by directly minimizing U. However,
this is a Latent Variable model so we keep track of the Latent
Variable, a in this case. Now the reduction coefficients, l and a,
are correlated to the same production causality. As a result this
integrated LVM exaggerates the CRS LP artifact by also producing
‘linearized’ uni-values for the Energy Consumption frontier as
well. See ESTECH shown in Table 3. This vindicates previous
authors who suggest that VRS models are more in keeping with
reality than CRS ones [14,41]

CRS LV¼Min l :

8DMUJj¼ 1,2,. . .,J; t¼ K ,L
� �
s:t:

XJ

J ¼ 1

zjx
t
pjraxt

p0, p¼ 1,2,. . .,P
XJ

J ¼ 1

zjy
t
qjZyt

q0, q¼ 1,2,. . .,Q

XJ

J ¼ 1

zju
t
rj ¼ lut

r0, r¼ 1,2,. . .,R

zjZ0,

Latent Variable 0ra¼

PJ
J ¼ 1

zjx
t
pj

xt
p0

r1

f8 DMU:p¼ 1,2,. . .,Pg ð11Þ

Note the induced distortions in other decomposition values,
and also that the Latin America frontier is now feasible. We also
note from their OECD study that CATECH exhibits a very low



A. Bretholt, Jeh-Nan Pan / Omega 41 (2013) 315–325320
standard deviation of 0.019 (SD) indicating that a degree of
linearization must be present.
5. Study 2: Decomposing OECD CO2 using the latent
variable model

Our second study uses the Organization of Economic Develop-
ment and Cooperation, the OECD, as its focus. The data set is given
in Table 4. Notice various combinations of increase and decrease
are possible giving evidence to the diverse mix of aggregate inputs
and aggregate GDP under varying technologies. That is, in some
cases there are increasing GDP and decreasing Energy Consump-
tion and CO2 Emissions; in some cases the reverse; and in some
cases all are increasing, etc. Hence it seems unreasonable to tie
undesirable outputs and normal outputs to proportional change as
implied by weak disposability of outputs. Nor does it seem
reasonable to think that a country with virtually no CO2 emissions
could exist without income (GDP) as implied by the null-joint
lemma. Hence, careful thinking must be applied to causality
within the data set before axioms are applied carte blanche.

Decomposition results using the VRS Min a Latent Variable
Model are shown in Table 5. Values less than one are considered
improvements, that is, contributing to the reduction of CO2 emis-
sions over the period. Since Technical Efficiency is measured in
CEEFCH and EUEFCH, if these values are equal to one, then the DMU
is on the Efficient Production Frontier. A good example is France, on
the EPF where a shift in Energy Saving Technology ESTECH and
reduction in Potential Carbon Factor PCFCH has led to the reduction
of CO2CH. On the other hand, Potential Energy Intensity PEICH and
GDP change have counteracted the reduction of CO2CH. Other
DMUs can be interpreted similarly. Also observe that all DMUs
and factors are feasible under the VRS Min a Latent Variable Model
Table 4
OECD data set ranked by relative carbon change (%).

Source: Key world energy statistics [40].

OECD 2001 2002

X (Pt J) Y (GDP) U (C Mt) X (Pt J)

Japan 21,646 3038 1165 21,643

United States 94,366 8978 5614 95,895

Spain 5352 767 287 5508

Canada 10,390 817 521 10,468

Korea 8119 675 442 8520

Turkey 2997 379 185 3158

Italy 7226 1334 426 7231

Mexico 6366 812 360 6586

Portugal 1065 163 59 1105

Finland 1418 124 61 1491

Sweden 2143 223 49 2137

Australia 4536 479 342 4719

Luxembourg 161 19 8 169

New Zealand 758 74 33 754

Greece 1202 170 90 1215

Netherlands 3235 407 178 3263

Iceland 141 8 2 143

Denmark 838 136 52 827

Ireland 634 109 43 641

Norway 1107 127 34 1110

Hungary 1071 118 56 1066

Switzerland 1173 200 44 1136

Austria 1292 209 67 1275

Slovak Republic 772 54 39 776

Czech Republic 1733 136 119 1747

Belgium 2470 253 120 2382

France 11,152 1436 384 11,132

Poland 3770 367 292 3734

United Kingdom 9814 1374 542 9483

Germany 14,795 1935 850 14,501
and that the values show incremental change since the period under
consideration is only one year. Sweden, however, ‘fell off’ the VRS
frontier during this period which caused an abrupt change in its
Energy Usage Efficiency factor, EUEFCH. Sweden’s ‘falling off’ the
frontier will be explored in the Scale Efficiency analysis to follow.

In Table 6 a comparison is made to Zhou and Ang’s results in
terms of factor reversals. That is, if a factor in our study shows
improvement and the same factor in their study shows deteriora-
tion, then this is a factor reversal. We also show infeasible factors
as reversals as in the case of Italy and Switzerland. Another
example, France has four reversals and it is on the VRS frontier as
are five other DMUs, shown in the ‘On EPF’ column. The ‘Low SD’
column shows whether the standard deviation of the factors for
each DMU is lower in the LVM. Lower variability indicates a
‘smoother’ transition from period to period.

Overall results show 72 of 180 possible reversals (40%); this
result overturns the previous analysis. Standard deviation is lower
for 20 of 30 DMUs (67%) indicating less abrupt changes from
period to period. The Latent Variable Model also determined that
8 DMUs populate the VRS frontier. As expected there are more
DMUs on the non-CRS frontier, which contributes to the reversals
on the frontier in CEEFCH and EUEFCH. Thus, our integrated
production theoretic LVM results reflect a more accurate assess-
ment of the factors contributing to CO2 reduction in the OECD for
2001–2002. That is, since the integrated and correlated derivation
of the reduction coefficients is consistent with the production
assumptions of Data Envelopment Analysis, our results reflect the
actual causal reductions possible within the data set (Table 7).

Table 8 presents a statistical summary of the decomposition
results by model. As noted, CO2CH and GDPCH remain unchanged in
each model. Other decomposition factors promote a reduction in CO2

emissions if their values are less than one; conversely if their values
are greater than one, they contribute to an increase in CO2 emissions.
Relative change (%)

Y GDP U (C Mt) X (Pt J) Y (GDP) U (C Mt)

3042 1207 0.1 1.0 46.0

9196 5652 73.8 47.8 41.8

783 303 7.5 3.4 17.5

843 532 3.8 5.8 11.6

718 452 19.3 9.4 10.8

409 193 7.8 6.5 8.6

1338 433 0.2 1.1 7.7

820 365 10.6 1.6 5.7

163 63 1.9 0.2 4.2

127 64 3.5 0.6 3.3

227 50 0.3 0.9 1.7

492 343 8.8 2.9 1.1

19 9 0.4 0.0 1.0

77 34 0.2 0.7 0.8

177 91 0.6 1.4 0.3

408 178 1.4 0.2 0.2

8 2 0.1 0.0 0.1

139 51 0.5 0.6 0.4

117 43 0.3 1.6 0.7

128 33 0.1 0.3 0.7

122 56 0.2 0.9 0.8

200 43 1.8 0.1 1.2

212 66 0.8 0.6 1.3

57 38 0.2 0.5 1.5

139 115 0.7 0.6 3.9

254 113 4.2 0.4 7.6

1453 377 1.0 3.8 7.8

372 283 1.7 1.1 9.3

1398 529 16.0 5.2 13.5

1938 838 14.2 0.8 13.7



Table 5
Decomposition results for the VRS Min a Latent Variable Model.

Source: Abraham Bretholt.

OECD Final decomposition of CO2 change for OECD countries for 2001–2: Radial Min X LV

CO2CH PCFCH PEICH GDPCH CEEFCH CATECH EUEFCH ESTECH

Australia 1.0029 0.9863 0.9997 1.0273 0.9797 0.9977 1.0244 0.9888

Austria 0.9822 0.9953 1.0029 1.0139 1.0000 1.0000 1.0023 0.9683

Belgium 0.9415 1.0434 0.9999 1.0067 0.9573 0.9774 0.9803 0.9773

Canada 1.0205 1.0240 0.9998 1.0326 0.9818 1.0075 0.9817 0.9942

Czech Republic 0.9696 1.0083 0.9993 1.0191 1.0085 0.9459 1.0336 0.9577

Denmark 0.9922 1.0194 1.0007 1.0206 1.0306 0.9570 1.0103 0.9564

Finland 1.0496 0.9693 0.9991 1.0226 1.0956 0.9400 1.0791 0.9538

France 0.9813 0.9830 1.0044 1.0121 1.0000 1.0000 1.0000 0.9820

Germany 0.9852 1.0226 1.0006 1.0018 0.9587 1.0253 0.9808 0.9969

Greece 1.0033 1.0222 0.9989 1.0376 1.0119 0.9596 1.0091 0.9665

Hungary 0.9875 1.0342 0.9986 1.0348 1.0240 0.9369 1.0121 0.9517

Iceland 1.0476 1.0092 1.0235 1.0000 1.0000 1.0235 1.0000 0.9909

Ireland 0.9861 1.0130 0.9687 1.0686 1.0000 0.9628 1.0000 0.9767

Italy 1.0167 1.0079 0.9970 1.0037 1.0000 1.0080 1.0000 1.0000

Japan 1.0363 1.0181 1.0111 1.0014 1.0000 1.0181 1.0000 0.9875

Korea 1.0224 1.0114 0.9995 1.0634 0.9587 1.0048 0.9945 0.9927

Luxembourg 1.1071 1.0070 1.0170 1.0106 1.0000 1.0474 1.0000 1.0212

Mexico 1.0144 0.9752 0.9999 1.0091 0.9982 1.0073 1.0314 0.9940

Netherlands 1.0011 0.9937 1.0000 1.0025 1.0056 0.9932 1.0201 0.9864

New Zealand 1.0210 1.0456 0.9935 1.0431 1.0391 0.9447 0.9941 0.9656

Norway 0.9822 0.9795 1.0023 1.0095 1.0000 1.0000 1.0274 0.9645

Poland 0.9705 1.0229 0.9998 1.0139 0.9671 0.9905 0.9921 0.9848

Portugal 1.0660 0.9732 0.9992 1.0049 1.0981 0.9613 1.0723 0.9637

Slovak Republic 0.9644 1.0348 0.9913 1.0444 0.9602 0.9655 0.9923 0.9785

Spain 1.0560 0.9910 0.9999 1.0205 1.0287 1.0065 1.0151 0.9936

Sweden 1.0330 1.0359 0.9596 1.0193 1.0000 1.0000 1.5872 0.6423

Switzerland 0.9749 1.0067 0.9840 1.0020 1.0000 1.0000 1.0000 0.9822

Turkey 1.0427 1.0188 0.9990 1.0778 0.9788 0.9923 0.9927 0.9858

United Kingdom 0.9771 1.0593 1.0091 1.0172 0.9421 1.0133 0.9458 0.9952

United States 1.0069 0.9981 0.9899 1.0243 1.0000 0.9927 1.0000 1.0021

Table 6
Decomposition results compared to literature: factor reversals.

Source: Abraham Bretholt.

DMUs Factor reversals using VRS Min a LV compared to literature

PCFCH PEICH CEEFCH CATECH EUEFCH ESTECH Low SD OnEPF

Australia True True

Austria True True True True

Belgium True True

Canada True True True True

Czech Republic True True

Denmark True True

Finland True

France True True True

Germany True True True

Greece True True

Hungary True True

Iceland True True True True True True

Ireland True True True

Italy True True True True True True True Truea

Japan True True True True

Korea True True True True

Luxembourg True True True True True True

Mexico True True True True

Netherlands True

New Zealand True

Norway True True

Poland True True True

Portugal True

Slovak Republic True True True

Spain True True True

Sweden True True True

Switzerland True True True True True True Truea

Turkey True True

United Kingdom True True

United States True True True True

a Infeasible DMUs on the EPF from the literature are feasible on the LV frontier.
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The models as established earlier are the benchmark Slacks
Model, Rev SBM, then our proposed Latent Variable Model, VRS
Min a. The next model violates the production process and ‘treats
outputs as inputs,’ VRS Min l with slacks removed was modified
from its CRS version which was used to exaggerate the artifact in
Study 1. CRS Min a is an LVM used to derive Scale Efficiency and
Returns to Scale. The Double CCR derives its reduction coefficients
from two different models and the decomposition does not use
Shepard Distances. Finally Zhou and Ang’s result are presented.

All models concur in some aspects: the countries of the OECD,
on average, are promoting lower carbon levels through Energy
Saving and Carbon Abatement Technology and by reduced
Table 7
Model rangesum scores and reduction coefficient correlations.

Source: Abraham Bretholt.

Rev SBM VRS Min a CRS Min a

Least aggregate variability (LAV)

RC Correl 0.8167 0.8350 0.6098

Add Inv 0.1833 0.1650 0.3902

RangeSum 1.4000 1.6840 1.7050

StDev GM 0.2700 0.3270 0.3360

LAV Score 0.4107 0.4496 0.6069

Rank 1 2 3

a No Shepard distances.
b Slacks removed.

Table 8
Statistical summary of model variance.

CO2CH PCFCH PEICH GDPCH CEEFCH

Decomposition statistical summary by model

Rev SBM
Geomean 1.007 1.020 1.007 1.022 1.001

Minimum 0.941 0.953 0.968 1.000 0.979

Maximum 1.107 1.206 1.270 1.078 1.040

StDev 0.036 0.051 0.051 0.020 0.014

VRS Min a
Geomean 1.007 1.010 0.998 1.022 1.000

Minimum 0.941 0.969 0.960 1.000 0.942

Maximum 1.107 1.059 1.024 1.078 1.098

StDev 0.036 0.023 0.012 0.020 0.035

VRS Min k

Geomean 1.007 1.018 0.960 1.022 1.000

Minimum 0.941 0.964 0.494 1.000 0.934

Maximum 1.107 1.113 1.422 1.078 1.091

StDev 0.036 0.034 0.187 0.020 0.034

NIRS MEI No Slk
Geomean 1.007 1.010 1.007 1.022 1.025

Minimum 0.941 0.651 0.558 1.000 0.719

Maximum 1.107 1.205 1.371 1.078 2.341

StDev 0.036 0.088 0.170 0.020 0.257

CRS Min a
Geomean 1.007 1.012 0.991 1.022 0.977

Minimum 0.941 0.963 0.781 1.000 0.911

Maximum 1.107 1.057 1.006 1.078 1.081

StDev 0.036 0.027 0.040 0.020 0.039

Dbl CCR No ShD
Geomean 1.007 1.023 0.980 1.022 0.998

Minimum 0.941 0.962 0.781 1.000 0.754

Maximum 1.107 1.395 1.063 1.078 1.118

StDev 0.036 0.074 0.046 0.020 0.061

ZA result
Geomean 1.007 1.027 0.980 1.022 0.998

Minimum 0.942 0.962 0.781 1.000 0.754

Maximum 1.107 1.395 1.064 1.078 1.118

StDev 0.036 0.078 0.047 0.020 0.061
Potential Energy Intensity. That is, that factor averages of ESTECH,
CATECH, and PEICH are in each case less than 1. Also the
Malmquist Productivity Indices for Carbon Reduction, CTFP MI, a
gage of Total Factor Productivity, indicates advance. This is what
we would expect and indicates that all models are responding to
the decomposition in a similar way: there are no gross errors in
the methodology of the decomposition or the models.

The models are ranked by lowest LAV Score, designed to capture
the Least Aggregate Variability (LAV). Little variation is expected in
decomposition factors over a short period, so exaggerated values due
to an inaccurate model can be easily detected by Range Checking.
This procedure takes the difference between the maximums and
Dbl CCRa Zhou and Ang VRS Min kb NIRS MEIb

0.0178 na 0.4103 0.2697

0.9822 1.0000 0.5897 0.7303

2.3590 2.3730 4.5610 7.4820

0.4160 0.4300 1.0050 1.4010

0.9878 1.0068 1.3930 1.9708

4 5 6 7

CATECH EUEFCH ESTECH CTFP MI ETFP MI

0.978 0.994 0.986 0.979 0.980

0.875 0.941 0.769

1.018 1.026 1.081

0.028 0.017 0.053

0.989 1.022 0.967 0.989 0.988

0.937 0.946 0.642

1.047 1.587 1.021

0.028 0.109 0.064

0.981 1.093 0.940 0.981 1.027

0.905 0.607 0.669

1.094 2.519 1.651

0.034 0.444 0.216

0.965 1.290 0.759 0.989 0.980

0.655 0.608 0.376

1.186 3.403 1.299

0.078 0.554 0.198

1.010 1.010 0.986 0.987 0.995

1.000 0.949 0.754

1.013 1.663 0.999

0.005 0.125 0.044

0.979 1.019 0.987 0.977 1.006

0.928 0.971 0.754

1.005 1.663 1.021

0.011 0.122 0.046

0.974 1.019 0.987 0.973 1.006

0.891 0.971 0.754

0.982 1.663 1.021

0.019 0.122 0.047
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minimums given in Table 8 for each factor. The RangeSum is then
taken over the factors for each model. The RangeSums and geometric
means of the SDs (StDev GM) are combined with the additive inverse
(Add Inv) of the reduction coefficients correlations (RC Correl) by
taking their GM to form the LAV Score. The Reverse SBM, VRS Min
a and CRS Min a exhibit the Least Aggregate Variability.

In Table 7 models ranked 4 through 7 are Min l and show the
poorest performance. The CRS and VRS Latent Variable Models
perform well and are used for Scale Efficiency tests. The Reverse
SBM serves as the benchmark for this study since it has no slacks
to perturb its accuracy and is, thereby, Koopmans Efficient.
5.1. Scale efficiency comparisons

As previously explained, Scale Efficiency is an integral part of
DEA that cannot be ignored during the model building process. It
has been demonstrated that the Latent Variable Model has
integrated Multiple Objectives, a and l, and performs well
compared to the SBM benchmark. Another advantage of the
LVM is that both reduction coefficients can be used to estimate
scale efficiency. Thus both consumption-side and carbon-side
evaluations of scale can be made. Such a comparison is impossible
without an LVM and its inherent properties.

In Table 9 the OECD countries are organized according to their
distribution along the VRS frontier from decreasing returns (DRS)
through constant returns (CRS) to increasing returns (IRS). The
countries on the CRS frontier exhibit the Most Productive Scale
Size, MPSS [42]. For 2001 and 2002 the MPSS countries were Italy
and Switzerland, whereas Sweden was also included in 2001, but
became slightly inefficient on the consumption side in 2002 and
Table 9
Scale efficiencies using both reduction coefficients.

Source: Abraham Bretholt.

OECD Scale efficiency

2001 2002

RTS Z Sum RTS Z Sum

United States DRS 6.733 DRS 6.871

France DRS 4.264 DRS 4.702

Japan DRS 2.278 DRS 2.273

Germany DRS 1.451 DRS 1.448

Sweden CRS 1.000 DRS 1.075

United Kingdom DRS 1.030 DRS 1.044

Italy CRS 1.000 CRS 1.000

Switzerland CRS 1.000 CRS 1.000

Canada IRS 0.612 IRS 0.630

Mexico IRS 0.609 IRS 0.613

Spain IRS 0.575 IRS 0.585

Korea IRS 0.506 IRS 0.536

Norway IRS 0.383 IRS 0.415

Australia IRS 0.359 IRS 0.368

Turkey IRS 0.284 IRS 0.305

Netherlands IRS 0.305 IRS 0.305

Poland IRS 0.275 IRS 0.278

Austria IRS 0.157 IRS 0.254

Belgium IRS 0.189 IRS 0.190

Greece IRS 0.128 IRS 0.132

Portugal IRS 0.122 IRS 0.122

Denmark IRS 0.102 IRS 0.104

Czech Republic IRS 0.102 IRS 0.104

Finland IRS 0.093 IRS 0.095

Hungary IRS 0.088 IRS 0.091

Ireland IRS 0.082 IRS 0.087

New Zealand IRS 0.056 IRS 0.058

Slovak Republic IRS 0.041 IRS 0.042

Iceland IRS 0.021 IRS 0.017

Luxembourg IRS 0.014 IRS 0.014
‘‘fell off’’ the CRS frontier: its Energy Intensity efficiency declined
to 95.4% in 2002.

Also in Table 9 note that Sweden, Norway, Iceland and France
demonstrate Scale Efficiency in carbon emissions reduction (SE
U¼1), but show inefficiencies in energy consumption reduction
(SE Xo1). Comparisons can be made against the relative changes
given in the data set as a method to cross check the LV
decomposition results. For example, the USA is very inefficient
in terms of Scale Efficiency on both sides (about 51.7%). It now is
obvious that the US devours 73.8% of the OECDs new Energy
Consumption because of its gross Scale Inefficiency. In addition
this Scale Inefficiency caused huge shortfalls (35.2%) in GDP in
2002 since US Energy Consumption translated into only 47.8% of
the OECDs new income, not 73.8%. Similarly Japan’s Scale Ineffi-
ciency (about 82.3%) is responsible for 46.0% of the OECDs rise in
Carbon Emissions.

Figs. 1 and 2 plot the GM of the Scale Efficiency of the
reduction coefficients for 2001–2002. Fig. 1 excludes DMUs on
the VRS frontier since these are shown to be outliers in Fig. 2.
From Fig. 1 it is evident that DMUs are conforming to certain
standards by the trend of their reduction pattern (slope is rough-
ly¼4.08). Outside of the CRS efficient DMUs Italy and Switzerland
at (1,1), four countries are performing better than the trend to
reduce their emissions: Sweden, Norway, Austria and England.
DMUs in Fig. 2 show a different trend in energy consumption and
emissions (slope is roughly¼1.15). These are the DMUs on the
VRS frontier, designated by ‘-F’, and they dispose of Carbon
Emissions roughly four times slower than the DMUs in Fig. 1 for
a given reduction in Energy Consumption. The USA, Germany,
Japan and France all show Decreasing Returns to Scale (DRS)
which shapes this trend.
Consumption side Emissions side

SE X�01 SE X�02 SE U�01 SE U�02

0.516 0.518 0.511 0.527

0.728 0.726 1.000 1.000

0.761 0.759 0.834 0.816

0.851 0.851 0.900 0.889

1.000 0.954 1.000 1.000

0.984 0.977 0.990 0.983

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

0.996 0.999 0.987 0.993

0.996 0.999 0.987 0.993

0.995 0.999 0.985 0.992

0.994 0.999 0.980 0.990

0.948 0.964 1.000 1.000

0.989 0.997 0.964 0.980

0.984 0.997 0.950 0.974

0.986 0.997 0.955 0.974

0.984 0.996 0.948 0.970

0.956 0.987 0.992 1.000

0.974 0.994 0.918 0.952

0.959 0.990 0.875 0.928

0.955 0.989 0.879 0.921

0.948 0.987 0.845 0.907

0.948 0.987 0.845 0.907

0.942 0.986 0.831 0.898

0.939 0.985 0.823 0.894

0.934 0.984 0.810 0.890

0.892 0.928 0.800 0.860

0.849 0.872 0.788 0.830

0.308 0.296 1.000 1.000

0.633 0.607 0.715 0.661



Fig. 2. Scale efficiency of outliers on the OECD frontier.

Fig. 1. Scale efficiency trends in the OECD.
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Furthermore, and of considerable theoretical importance, is that
most VRS frontiers are populated by a majority of outliers, as
shown here, that are not Scale Efficient. Iceland and France are
partial exceptions since both have mitigated emissions to a great
extent due to their input mix, geothermal [43] and nuclear
respectively. Nevertheless, further research is necessary to unravel
this VRS conundrum.

The obvious trends in Scale Efficiency supported by the under-
lying Factor Reversals in the decomposition and the logical
associations with Relative Change in the data set demonstrate
some of the numerous advantages of the Latent Variable Environ-
mental Model.
6. Concluding remarks

This article has presented several models that reduce undesir-
able outputs directly using weak disposability of outputs as their
axiomatic basis. For aggregated data it has been proposed that
weak disposability of inputs conforms more closely to production
theoretic assumptions. Thus the Latent Variable DEA model offers a
consistent basis as an environmental technology. Its primary
strength is that as a multiple objective decision model in an
integrated environment its reduction coefficients are strongly
correlated to production causality. As a result both reduction
coefficients yield scale efficient outcomes that optimize the infor-
mational content of the data. The model is also highly correlated to
its slacks based counterpart, used here as a benchmark for model
comparison, showing that the LV environmental technology may
well be an optimal, slacks-free, Koopmans Efficient model. Further
research is necessary to confirm this point.

In this study a new method for model comparison has also
been devised to evaluate the efficacy of ‘treating outputs as
inputs’ since this is often the interpretation given to weak
disposability of outputs in the literature. The application studies
use a Malmquist styled decomposition to test the variance
between models. This type of model comparison has not been
done before: it proposes that the range sum and standard
deviation of decomposition factors are sensitive indicators of
model performance. Also it proposes that reduction coefficient
correlation gauges the relative adherence of a model to produc-
tion causality. When combined, these elements confirm that
Min l models are flawed from the production theoretic perspec-
tive when aggregate data is under consideration.
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The results of the application studies show that the VRS
reference technology is superior to the CRS frontier in decom-
position studies since the later tends to linearize the frontier
factors of the Malmquist Index. The results of the new VRS Latent
Variable model applied to the same OECD study from the
literature shows factor reversals in 40% of cases. That is, if a
factor was shown to decrease under the CRS uncorrelated sce-
nario, it was shown to increase under the integrated VRS LV
environmental model. Finally, two graphs presenting the Scale
Efficiency of the simultaneous reduction of Carbon Emissions and
Energy Consumption demonstrate the efficacy of Latent Variable
analysis since such correlated results have not been possible
before. The outliers on the second graph reveal that the VRS
frontier also has its shortcomings, that is, although the frontier is
Farrell efficient many of its DMUs show a high degree of scale
inefficiency. This reveals an important discrepancy in Data Envel-
opment Analysis that warrants further research.

Overall the introduction of the Latent Variable Data Envelop-
ment Analysis technology is a first step towards the analysis of
not only undesirable outputs, but for the inclusion of externalities
that impact both business and society. Carbon emissions were
ignored for many decades before they became an important
theme in Data Envelopment Analysis. This study by using the
integrated Latent Variable Reduction model, has demonstrated
the production theoretic simultaneous reduction of Carbon Emis-
sions through their causal linkage with Energy Consumption.
Similarly much research lies ahead for the inclusion of other
externalities using the Latent Variable Method.
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