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PI of IHCL

Intelligent Hyperspectral Computing Laboratory (No magic, only basic!)
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Blind Source Separation (Magic 1?)

Low Rank Model: Z = AS, or columnwisely z[n] = As[n] [Lin’16a].

A = [a1, . . . ,aN ] is the spectral signature matrix.

S is the material abundance/distribution matrix.

The rank N , i.e., model order?

[Lin’16a] Chia-Hsiang Lin et al., “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind

hyperspectral unmixing,” IEEE Trans. Signal Processing, vol. 64, no. 8, pp. 1946-1961, Apr. 2016.
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Parallel Computing of HyperCSI Algorithm (Basic)

Even without parallel computing, HyperCSI has been about 10,000 times faster than
the benchmark MVC-NMF!
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Model Order Selection (MOS) (Basic)

A fundamental topic in Machine Learning!

Information-theoretic minimum description/code length (MDL).

The code length MDL(N) = − log(f(X | Θ(N)
ML )) + 1

2
D(Θ(N)) log(L) induces

very complicated optimization (non-convex/non-smooth).

Monte Carlo algorithm: high-dimensional Gaussian-Dirichlet convoluted integral.

Effective for many research domains:

(source codes available)

[Lin’17a] Chia-Hsiang Lin et al., “Detection of sources in non-negative blind source separation by minimum description

length criterion,” IEEE Trans. Neural Networks and Learning Systems, 2018.
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Decoding in Compressed Sensing (Magic 2?)

“All-addition hyperspectral compressed sensing for miniaturized satellite”
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Convex Optimization (Basic)
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Hyperspectral Inpainting (Magic 3?)
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Löwner-John Ellipsoid (LJE) (Basic)

It is the maximum-volume ellipsoid inscribed in the data-constructed convex hull.

X : convex hull of dimension-reduced data.

E(F , c) , {Fu + c | ‖u‖2 ≤ 1}, where F
characterizes the semi-axis directions/lengths,
and c is the ellipsoid center.

Formulation:

max
F∈R(N−1)×(N−1),c∈RN−1

vol( E(F , c) )

s.t. E(F , c) ⊆ X ,
(1)

Solution:

E(F , c) = E(
√
FF T , c), so we can

assume w.l.o.g. that F ∈ SN−1++ .

vol(E(F , c)) ∝ log det(F ), whose
negative is convex on SN−1++ .

E(F , c) ⊆ X is equivalent to a set of
convex second-order cone constraints
‖Fbi‖ ≤ hi − bTi c, ∀i = 1, . . . ,m.
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LJE for Hyperspectral Inpainting (Basic)

Figure 1: Topology mapping between complete and missing matrices.
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Fast Super-resolution (Magic 4?)

(b) (c)

a

(a)

Figure: The 50th band of (a) Z, (b)Yh

and (c) the inversed Ẑ by CO-CNMF on 3
data: Pavia University (top), Washington
DC (middle) and Moffett Field (bottom).
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Data Fusion Theory (Basic)

Hyperspectral data Yh:

high spectral resolution;
low spatial resolution;
bands: M �Mm

Multispectral data Ym:

low spectral resolution;
high spatial resolution;
pixels: L� Lh

Super-resolved data Ẑ:

high spectral resolution;
high spatial resolution.

Annual Data Fusion Contest, IEEE Geoscience and Remote Sensing Society
(GRSS). (Very important topic for remote sensing!)

State-of-the-art results in our recent paper [Lin’18a]! (source codes available)

[Lin’18a] Chia-Hsiang Lin et al., “A convex optimization based coupled non-negative matrix factorization algorithm for

hyperspectral and multispectral data fusion,” IEEE Trans. Geoscience and Remote Sensing, 2018.
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Metamaterial Design (Magic 5?)
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No Magic, Only Basic!

Next, we focus on ESA’s Sentinel-2 Satellite super-resolution problem.

14 / 40



Super-resolution in Remote Sensing

Why? “Remote” v.s. “Spatial resolution” (classification).

How? (sounds like magic)

Direct acquisition? (too expensive, hardware limitation)

Image fusion? (no high-resolution counterpart)

=⇒ “Single image super-resolution (SISR)”

15 / 40



Single Image Super-resolution (SISR)

SISR for RGB images — a key topic for computer vision (CV) [Glasner’09]!

SISR for Sentinel-2 (a new satellite) multi-spectral images is challenging due to

- insufficient data to train the deep neural network;

- multi-resolution images (see next page).

[Glasner’09] D. Glasner et al., “Super-resolution from a single image,” IEEE International Conference on Computer Vision

(ICCV), 2009, pp. 349-356.
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Sentinel-2 Satellite

Launched by European Space Agency (ESA) with the following specifications:

=⇒ B10 (recording only the cirrus information) is for atmospheric correction;

=⇒ Different spectral bands have different spatial resolutions.

Sentinel-2 data provide multi-spectral multi-resolution images, whose analysis would
not be very effective due to the lack of complete spectral patterns.

No pixel...conventional imaging theory is no longer applicable...
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Problem Statement

If we can super-resolve all the
low/medium-resolution bands to
achieve 10m spatial resolution,
we can facilitate many practical
applications:

(a) agricultural monitoring,

(b) coastal line observation,

(c) mountainous area modeling,

(d) urban area development.

As aforementioned, data fusion,
deep learning and conventional
CV theory are not applicable.
Any novel SISR theory?

Mathematical tools:

1 BCCB Matrix
(Unsupervised) Fitting;

2 Convex Self-similarity
(Graph) Regularization;

3 Large-scale Optimization.
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Importance of Sentinel-2 Satellite

Worldwide applications in
military, precision agriculture,
land mapping/classification,
etc., across various land
covers (crop, coastal,
mountainous, unban areas).

However, lacking of pixel
makes related analysis very
difficult.

19 / 40



Challenges in Sentinel-2 Super-resolution

Conventional model-based theory? No pixels...

Conventional leaning-based theory? No big data...

Developing novel methods is inevitable:

Low-rank modeling (pixel basis)

Unsupervised learning (and single data)

Other math tools:
1 Explicit definition of self-similarity

2 BCCB matrix theory

3 Very large-scale optimization—ADMM
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Kronecker Modeling of Sentinel-2 Data

Sentinel-2 has ` = 12 spectral bands, including `1 = 4 10m bands, `2 = 6
20m bands, and `6 = 2 60m bands.

Their upsampling factors are r1 = 1, r2 = 2, and r6 = 6, respectively.

ni: #(pixels) in the band with upsampling factor ri, ∀i ∈ {1, 2, 6}.

The target image X ∈ R`×n (i.e., super-resolved Sentinel-2 images)

contains n , r2i ni high-resolution pixels.

Let xb ∈ Rn be the vectorized image of the bth band of X.

Let x , [xT
1 , . . . ,x

T
` ]

T ∈ R`n.

(Inconvenient) Let Yb ∈ Rni,1×ni,2 (ni,1ni,2 = ni) be the bth band of Y .

(Convenient) Insert zeros to Yb, making the number of pixels also n, i.e.,

yb , vec(Yb ⊗ (e
(ri)
1 (e

(ri)
1 )T ) ∈ Rn.

So, the data can be represented as y = [yT
1 , . . . ,y

T
` ]T ∈ R`n.
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Kronecker Modeling of Sentinel-2 Data

The forward model:
y = MBx + n, (2)

M ∈ R`n×`n is block diagonal with bth diagonal block being the
downsampling matrix of band b, i.e., Mb = MT

2 ⊗M1, where

M1 , In′1/ri ⊗
(
e
(ri)
1 (e

(ri)
1 )T

)
∈ Rn′1×n

′
1 , and

M2 , In′2/ri ⊗
(
e
(ri)
1 (e

(ri)
1 )T

)
∈ Rn′2×n

′
2 .

B ∈ R`n×`n is also block diagonal with bth diagonal block being a
block-circulant-circulant-block (BCCB) matrix, i.e.,
Bb = (Fn′2

⊗ Fn′1
)HΣ(Fn′2

⊗ Fn′1
), for spatially invariant blurring of

band b (a 2D cyclic convolution associated with the point spread
function (PSF) of band b).

Σ is diagonal with the diagonal vector being the vectorized version of
the 2D DFT of the n′1 × n′2 convolution/blurring kernel.

Sentinel-2 super-resolution: to recover x from y.
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Problem Formulation

To recover x from y, the data-fitting is naturally minx ‖y −MBx‖2.

To handle the ill-posed inverse problem, we propose two strategies:

1 Low-rank modeling

More than 99% of the signal energy of the 12-bands Sentinel-2
image is retained in the p = 5 principal components.
Therefore, we can write [x1, . . . ,x`]

T = UZ, or equivalently

x = (U ⊗ In)vec(ZT ), (3)

for some full column rank U ∈ R`×p. Z is termed eigenimage.

2 Regularization

From (2) and (3), a regularized criterion is proposed:

min
z

1

2
‖y −MB(U ⊗ In)z‖22 + λφ(z), (4)

where z , vec(ZT ), λ > 0, and φ is a regularizer to further
mitigate the ill-posedness.
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Self-similarity Regularization

As some spatial information is
missing (e.g., blurring), just
find other spatial information
as a compensation!

Self-similarity: An important
spatial structural information
commonly observed in natural
images, including RGB, SAR,
MRI, multispectral,
hyperspectral images, etc.

No explicit definition...

Plug-and-play in machine
learning has no convergence
guarantee...
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Unsupervised Learning: Explicit, Convex and
Scene-adapted Self-similarity Regularizer

Self-similarity: existence of similar patches at different locations in a given image
(critical prior information for the ill-posed inverse problem).

A widely observed phenomenon in natural images, including optical and radar
images [Zhao’14], [Deledalle’14], but there is no explicit mathematical definition.

For the first time, we define it as a convex regularization function of the
eigenimage z:

φ(z) ,
1

2

p∑
b=1

∑
(i,j)∈K

αi,j ‖Pizb − Pjzb‖22. (5)

Why convexity? (fast software with convergence guarantee)

The self-similarity graph K is scene-adapted (i.e., automatically learned from the
Sentinel-2 image itself), rather than fixed (cf. TV regularization).

How to unsupervisedly learn the self-similarity pattern (K, αi,j)?

[Zhao’14] Y. Zhao et al., “Hyperspectral imagery superresolution by spatial-spectral joint nonlocal similarity,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, 2014.

[Deledalle’14] C.-A. Deledalle et al., “Exploiting patch similarity for SAR image processing: the nonlocal paradigm,” IEEE

Signal Processing Magazine, vol. 31, no. 4, pp. 69-78, 2014.
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Regularizer using Self-similarity Graph

GSP: a newly emerged area in
signal processing community for
natural language understanding.

We explicitly define self-similarity

as a “weighted” graph K:

vertex: patch;
edge: connecting similar
patches;
weight: similarity measure
αi,j ≥ 0.

The graph is transformed into the
aforementioned convex algebra (5),
allowing the adoption of
distributed optimization theory
with convergence guarantee.
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Convex Criterion for Sentinel-2 SISR

A convex criterion has been designed as follows:

min
z,v,Vi,j

‖y −MBv‖22
λ

+
∑

(i,j)∈K

αi,j‖(Pi − Pj)Vi,j‖2F

s.t. v = (U ⊗ In)z,

Vi,j = ZT , ∀(i, j) ∈ K,

The acquired Sentinel-2 image y is modeled as
the blurred (B) and downsampled (M) version
of the super-resolved image v — data fidelity!

U : feature subspace (also automatically learned).

A large-scale optimization with BCCB structure.
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The S4 Software

The BCCB structure is employed to design fast algorithm behind our software:

Scene-adapted Self-similarity regularized Sentinel-2 Super-resolution algorithm!

1. Closed-form solutions are derived for all the algorithmic steps =⇒ fast!

2. Theoretical guarantee of convergence to global optimum of our learning criterion!
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S4: High-dimensional Matrix Inversion I — BCCB
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S4: High-dimensional Matrix Inversion II — Column
Sparsity Pattern
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S4: High-dimensional Matrix Inversion III —
Kronecker Theory (p = 5, n = 432× 108 = 46656)
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Experimental Setting

Datasets:

1. real Sentinel-2 dataset: 4 most commonly studied scenes (corresponding to

the 4 aforementioned applications: agricultural monitoring, coastal line

observation, mountainous area modeling, urban area development),

2. synthetic dataset: for performance comparison only.

Key peer methods:

1. area-to-point regression kriging (ATPRK) [Wang’16],

2. multi-resolution sharpening approach (MUSA) [Paris’18].

Performance measures:

1. spectral angle mapper (SAM) ∈ [−π, π] (the smaller, the better),

2. root-mean-square error (RMSE) ∈ [0,∞) (the smaller, the better),

3. signal-to-reconstruction error (SRE) ∈ (−∞,∞) (the larger, the better),

4. universal image quality index (UIQI) ∈ [−1, 1] (the larger, the better),

measuring spectral distortion, loss of correlation, luminance distortion and contrast
distortion.

[Wang’16] Q. Wang et al., “Fusion of Sentinel-2 images,” Remote Sensing of Environment, 2016.

[Paris’18] C. Paris et al., “A novel sharpening approach for super-resolving multi-resolution optical images,” IEEE Trans.

Geoscience and Remote Sensing, 2018.
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Real Sentinel-2 Data 1: Mountainous Area

(True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]

(False color composition — 20m) B5+B6+B7 & B8a+B11+B12

(False color composition — 60m) B1+B9
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Real Sentinel-2 Data 2: Coastal Area

(True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]

(False color composition — 20m) B5+B6+B7 & B8a+B11+B12

(False color composition — 60m) B1+B9
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Real Sentinel-2 Data 3: Crop Area

(True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]

(False color composition — 20m) B5+B6+B7 & B8a+B11+B12

(False color composition — 60m) B1+B9
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Real Sentinel-2 Data 4: Urban Area

(True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]

(False color composition — 20m) B5+B6+B7 & B8a+B11+B12

(False color composition — 60m) B1+B9
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Quntitative Comparison on Synthetic Data

Our S4 software:

- best spectral property (joint learning) — key to multi-resolution analysis,

- best global accuracy (or close to the best),

- much faster than key competitors.
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Summary

ESA’s Sentinel-2 satellite is important for various Earth observation missions, but
effective analysis is hampered by its multi-resolution nature (10/20/60 meters).

Super-resolving the 20/60m bands to achieve 10m resolution is desired, and our
S4 software achieves so by incorporating the self-similarity prior info. (to
compensate the loss of spatial info.) into a convex optimization framework.

S4 is capable of reconstructing spatial details in various scenes,
while preserving spectral characteristics, with source codes released
on IEEE Code Ocean and my website (cf. QR Code).

Thank You for Your Attention.
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Special thanks to my first batch of students!

Thank You for Your Attention.
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Discussion Time

Q & A

“No Magic, Only Basic.”
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