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Abstract

This paper builds on recent work on measuring and evaluating environmental performance of a process using

statistical process control (SPC) techniques. We propose the CUSUM chart as a tool to monitor emissions data so that

abnormal changes can be detected in a timely manner, and we propose using process capability indices to evaluate

environmental performance in terms of the risk of non-compliance situations arising. In doing so, the paper fills an

important gap in the ISO 14000 and TQEM literatures, which have focused more on environmental management

systems and qualitative aspects rather than on quantitative tools. We explore how process capability indices have the

potential to be useful as a risk management tool for practitioners and to help regulators execute and prioritize their

enforcement efforts. Together, this should help in setting up useful guidelines for evaluating actual environmental

performance against the firm’s environmental objectives and targets and regulatory requirements, as well as encour-

aging further development and application of SPC techniques to the field of environmental quality management and

data analysis. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Environment; Quality control; Quality management; Environmental performance evaluation; SPC; CUSUM chart; Process

capability indices

1. Introduction

The potential for operations research and op-
erations management to make important contri-
butions to environmental management practice
has been increasingly recognized by academics and

practitioners alike, as witnessed (among others) by
recent or forthcoming special issues in journals
such as European Journal of Operational Research
(volume 102, 1997, and a focused section on re-
verse logistics is forthcoming), Computers & In-
dustrial Engineering (Gupta and Flapper, 1999),
Journal of Electronics Manufacturing (Gupta,
1999), and Production and Operations Manage-
ment. Several reviews also testify to this effect; see,
for instance, Bloemhof-Ruwaard et al. (1995) and
ReVelle (2000) for applications of OR to envi-
ronmental management, and Angell and Klassen
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(1999) for links between operations management
and environment. One area in which OR has clear
potential has been largely neglected, though: the
application of statistical process control (SPC)
tools to environmental process control and man-
agement. The potential has been noted before (for
instance, in Corbett and Van Wassenhove, 1993,
1995), and Madu (1996) offers a deeper discussion
of how a broad range of quality control methods,
including control charts, can be applied to envi-
ronmental management. The current paper builds
on this by discussing environmental applications
of SPC in greater detail. In particular, process
capability indices are very promising and have (to
our knowledge) not been discussed in this context
before.

In many countries, the costs of pollution have
risen dramatically during the past decades. Some
major accidents such as Bhopal and the Exxon
Valdez have been well publicized, with their total
costs running into several billions of dollars. Small
accidents, though they may only affect the local
community, clearly also carry a cost to the firm,
especially if they occur too frequently. And even
relatively small emissions in excess of local regu-
lations can be very costly to firms through taxes
and penalties. Exceeding the amount of SO2 or
NOx emissions permitted, or releasing higher con-
centrations of heavy metals into the local river, can
lead to substantial fines, civil and criminal lawsuits,
and even partial or full shutdown of the offending
process. Striking the right balance between tight
control of these processes while still maintaining
efficiency is precisely the purpose of SPC.

Two key approaches to environmental im-
provement commonly found in the literature are
environmental management systems standards
such as ISO 14000 (see e.g. Marcus and Willig,
1997) or EMAS (which requires more public dis-
closure of environmental performance data), and
the Total Quality Environmental Management
(TQEM) philosophy. ISO 14000, largely analo-
gous to the widespread ISO 9000 series of quality
management systems standards, was introduced in
Fall 1996, and by the year 2000 over 13,000
companies worldwide had already sought ISO
14000 certification. Early evidence suggests that
there is significant overlap between ISO 9000 and

ISO 14000, not just in how the standards are de-
signed but also in drivers of diffusion (Corbett and
Kirsch, 2001). Environmental Performance Eval-
uation is a key aspect of ISO 14000; indeed, clause
4.5.1 (Monitoring and Measurement) of ISO
14000 requires that a firm implement ‘‘documented
procedures to monitor and measure on a regular
basis the key characteristics of its operations and
activities that have significant impacts’’ (Kuhre,
1998). With the increasingly widespread adoption
of ISO 14000 and of environmental management
systems more generally, many firms now have
much more detailed data on environmental per-
formance of their processes than ever before, but
often do not know how to use such data to help
control their processes.

The observation underlying ‘‘Total Quality
Environmental Management’’ (TQEM) is that
many of the concepts used in Total Quality
Management (TQM) should also help manage
environmental impacts, as explained in more detail
in Madu (1996) and Angell and Klassen (1999).
TQM can be viewed as a holistic approach to
quality management, including continuous im-
provement, proper training and empowerment of
workers, appropriate incentives, quality manage-
ment systems, and extensive use of SQC tech-
niques to support all this. TQEM carries the same
philosophy into the environmental realm. How-
ever, most discussions of this analogy so far have
focused on the ‘‘softer’’ aspects of TQM. While all
these are undeniably important, the quantitative
tools associated with statistical process control
methods are a key ingredient of TQM, but one
that has hardly been explored in the TQEM liter-
ature. A valuable exception is Madu (1996), who
does explain how control charts can be used for
environmental monitoring.

The current paper builds on that by showing
how process capability indices can be useful for
quantitatively evaluating environmental perfor-
mance of a process with respect to prevailing reg-
ulation. This is an important risk management
tool for practitioners, as it helps identify which
processes are at risk of provoking compliance
problems, but also for regulators, as it contains
useful information for enforcement. It is common
for customers to ask suppliers to share their SPC
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charts and to reduce acceptance sampling when
these SPC charts show that the suppliers’ processes
are in control; similarly, regulators could ask for
environmental SPC charts and decide on that basis
which firms need more or less frequent inspections.

Especially with all the new and detailed envi-
ronmental performance data now being gathered
as a result of the trend towards adopting envi-
ronmental management systems and ISO 14000,
applying quantitative methods as SPC is becoming
far easier than before. However, there are some
important differences between the quality man-
agement and environmental management contexts,
which have not been highlighted to date; we dis-
cuss the implications of these differences here.

In Section 2 we review some pertinent literature
on environmental management and statistical
process control. Section 3 discusses how to per-
form measurement, monitoring and evaluation of
environmental performance in the context of an
example based on nitrate contamination data.
Section 4 explains in detail the stepwise procedure
for combining quality control charts and process
capability analyses respectively for evaluating the
risk of a process discharge. Section 5 offers a
deeper discussion of process capability analysis in
the contexts of environmental risk assessment and
environmental regulation and enforcement
Throughout, but especially in Section 6, we discuss
how the environmental context differs from a
standard application to quality control and how
existing SPC techniques need to be modified ac-
cordingly. In Section 7 we discuss our findings and
offer suggestions for future work.

2. Review of pertinent literature and theory

The pertinent literature for our purposes can be
grouped into two categories: monitoring environ-
mental performance, and quality control charts
and related methods.

2.1. Monitoring environmental performance

Many initiatives exist worldwide to monitor
air and water quality of entire regions; we only

review a small representative sample here. The
WHO (World Health Organization) air quality
monitoring project began operation in 1973 and
is part of the Global Environmental Monitoring
System. Sulfur dioxide ðSO2Þ and suspended
particle matter (SPM) data were selected for in-
clusion in the project as indicators of industrial
pollution (Koning et al., 1982). Information on
these pollutants was routinely collected from in-
dustrial, commercial and residential stations from
one urban area in each of the 14 participating
countries. From 1976 to 1982, the network has
been extended into developing countries, to a
total of 65 cities in over 40 countries. Degraeve
and Koopman (1998) apply mathematical pro-
gramming to determine a mix of policy measures
to help achieve air quality standards in the
European Union.

Others have looked at environmental monitor-
ing at a local rather than regional level. Crockett
(1997) reports on water and wastewater quality
monitoring at McMurdo research station in Ant-
arctica. Results of the effluent monitoring efforts
show that concentrations of metals, particularly
copper, are considerably higher than before. At
the individual facility level, Friend (1998) suggests
a set of metrics that may impact both profitability
and environmental quality, capture and quantify
eco-efficiency costs and benefits, and help manag-
ers understand and focus on tangible, yet difficult-
to-quantify benefits such as innovation, etc. In
order to do this, he developed eco-efficiency met-
rics for cost structure and input measures includ-
ing the consumption of energy, water, materials
and labor; the output measures include solid
waste, air emissions, effluents, packaging and
throughput, etc. Miakisz and Miedema (1998) re-
port that 33 electric utility companies in the US
and Canada participated in a unique environ-
mental benchmarking program (EBP). The EBP
provides each participant with ideas on how to
improve its performance measures in eight differ-
ent categories, such as heat rates, combustion
turbines, energy savings, air emissions, and other
residuals.

Pollution prevention technologies have gener-
ally been advocated as holding potential to move
manufacturing operations toward sustainable de-
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velopment and improved environmental perfor-
mance (Lewis, 1988). For various reasons, firms in
Europe have historically been more proactive in
pollution prevention than firms in the US who
tend to rely more on end-of-pipe measures (Gra-
edel and Allenby, 1995, p. 80). However, the Pol-
lution Prevention Act passed in the US in 1990
explicitly states that ‘‘source reduction is more
desirable than waste management and pollution,
yet opportunities for source reduction are often
not realized’’ (Freeman, 1995, pp. 28–29). Mea-
sures of performance have grown more varied over
the past two decades, as different stakeholders seek
to assess a broad range of environmental impacts.
Since 1987, all US manufacturing plants are now
required by the Environmental Protection Agency
to publicly report all toxic pollutants released, in
the so-called Toxic Releases Inventory. Carrera
and Iannuzzi (1998) pointed out that many com-
panies do not track or measure environmental
costs and therefore do not know their true envi-
ronmental costs. Applying SQC methods as ad-
vocated here can help firms measure and interpret
their environmental impacts and associated costs
much more meaningfully.

2.2. Quality control and environmental management

The term ‘‘Total Quality Environmental Man-
agement’’ (TQEM) has come into vogue in recent
years, as witnessed by the large number of articles
on the subject and even journals bearing that name
(Total Quality Environmental Management and
Environmental Quality Management). The under-
lying philosophy of TQEM is that the principles of
TQM apply to environmental improvement too
(Angell and Klassen, 1999). Though the potential
of applying quality control tools to environmental
management has been pointed out before (Corbett
and Van Wassenhove, 1993, 1995; Madu, 1996),
the current paper goes beyond those works by
highlighting the potential of process capability
indices as a tool for environmental performance
evaluation, and by offering a more detailed dis-
cussion of the differences between the quality
control and environmental management contexts
and the consequences for carrying SPC tools de-

veloped for the former arena over into the latter
arena. The extensive review by Angell and Klassen
(1999) supports our belief that these questions
have not yet been explored.

ReVelle (2000) states that operational research
has been usefully applied to a wide variety of en-
vironmental problem areas including water re-
source management, water quality management,
solid waste operation and design, cost allocation
for environmental facilities, and air quality man-
agement. Despite almost four decades of such ac-
tivity, challenging operational problems remain in
all of these areas. A similar argument can be made
about the application of modern statistical process
control charts and related methods to the field of
environmental quality management since these
techniques still remain unfamiliar to most envi-
ronmental personnel. Although control charts
have gained considerable acceptance for some
types of quality checks familiar to environmental
chemists (Juran and Gryna, 1993), they are less
frequently applied in environmental monitoring.
One reason for this lack of use is that most refer-
ences emphasize control charts for mean and range
(X and R charts) which are not usually applicable
since environmental samples are not commonly
run in replicate.

Woodall and Montgomery (1999) provide an
overview of current research on control charting
methods for process monitoring and improvement.
They offer a historical perspective along with ideas
for future research. Woodall (1997) presents a
comprehensive bibliography on control charting
methods using attribute data, for example, p, np, c
and u charts, which might be applicable for mon-
itoring qualitative environmental indicators. Per-
formance of control charts is commonly evaluated
based on their average run length (ARL), the av-
erage number of samples required to detect an out-
of-control point. Exponentially weighted moving
average (EWMA) control charts are developed for
monitoring the rate of occurrences of rare events
based on the interval times of these events. Gan
(1998) provides a simple procedure for determin-
ing the parameters of a one-sided or two-sided
EWMA chart. Cumulative sum (CUSUM) charts,
first proposed by Page (1954) and studied since by
many authors, have proven to be very effective in
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detecting small process shifts. Both Gan (1998)
and Pan and Lin (1999) found the CUSUM chart
to be optimal for detecting shifts in the process
mean, while the EWMA chart is found to be
slightly less sensitive due to subjective selection of
the smoothing constants.

Each control chart method has its advantages
and disadvantages. Some authors (Montgomery,
1980, 1996; Woodall and Montgomery, 1999) use
economic criteria to determine optimal chart pa-
rameters. Montgomery (1980) presents a compre-
hensive review and survey on these economic
decision models. Ho and Case (1994) also provide
a brief literature review on economic design of
control charts. These economic control charts have
not yet been widely applied in practice, primarily
due to the difficulty of arriving at reliable estimates
for the cost parameters involved. However, in the
case of emissions monitoring, the cost of an out-
of-compliance situation is often defined precisely
by the prevailing legislation, in the form of pen-
alties and taxes for excess emissions. Further ex-
ploration of economic control charts for
environmental process control is a promising area
for future research; for the moment, we start with
exploring how to modify conventional control
charts and process capability analyses for envi-
ronmental purposes.

3. Measurement, monitoring and evaluation of

environmental performance

Here, we first outline the general problem of
environmental process control and evaluation. We
start with some issues related to measurement,
then monitoring using modified control charts,
and performance evaluation using process capa-
bility indices.

3.1. Measurement

Accurate measurement is naturally a prerequi-
site for meaningful process control, and measure-
ment of environmental performance indicators is
even more challenging than it is for traditional
quality control purposes. Contamination is a

common source of error in all types of environ-
mental measurements. Most approaches present
numerous opportunities for sample contamination
from a variety of sources (Lewis, 1988). This sec-
tion addresses the problem of assessing and con-
trolling sample contamination. A similar approach
may also be applied to other types of environ-
mental problem, such as air and water quality
monitoring, as long as the key quality character-
istics and their specification limits are clearly de-
fined. Lewis (1988) indicates that equipment and
apparatus, sampling in the field, sample contain-
ers, ambient, glassware, and reagents, etc., are
common sources of contamination. The most
commonly used analytical tools for assessing and
controlling sample contamination are blanks. Ac-
cording to Lewis (1988), there are three types of
laboratory blanks: system, solvent and reagent
blanks for assessing and controlling many types of
laboratory contamination. There are also three
types of field blanks: matched-matrix, sampling
media, and equipment blanks, which are used to
provide information about contaminants that may
be introduced during the sample collection, stor-
age, and transport. Regardless of the types of
blank used for the application, one should mini-
mize the potential risk for inadvertently introduc-
ing contamination during the preparation of the
blank or at any other point where the actual
samples are not exposed to a similar opportunity
for contamination. When properly used, blanks
are very effective tools for assessing and control-
ling sample contamination and in adjusting mea-
surement results to compensate for the effect of
contamination (Lewis, 1988). Whether blank data
are used primarily for ongoing process control or
for retrospective assessment, Shewhart charts
(mean and range or mean and standard deviation,
i.e. X–R or X–S) and other types of control charts
provide the most effective tools for monitoring and
interpreting the blank results.

3.2. Monitoring

Process control using control charts typically
involves two phases (Gan, 1998; Montgomery,
1996). A process being ‘‘in control’’ implies that
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the process is stable and the probability distribu-
tion does not vary significantly over time. A con-
trol chart would be a test of the hypothesis that the
probability distribution of observation x is sta-
tionary, i.e. the mean of the distribution is con-
stant. In general, the population mean will be
unknown. The first period of the data analysis,
also called the base period, is used for estimating
the population mean as well as for establishing the
tentative or trial upper control limit (UCL) and
lower control limit (LCL). Any out-of-control
points for which assignable causes can be found
should be removed or eliminated before the trial
control limits are calculated. Depending on how,
when and where the measurements are taken, one
may need to look beyond the boundaries of the
process itself for assignable causes, further than
one would normally do in the context of quality
control.

These estimated values are used for the subse-
quent period, known as the monitoring period. The
estimated population mean obtained during the
base period continues to be used during this period.
Any rejection of the hypothesis that the process
mean remains unchanged would be called ‘‘process
out of control’’ or ‘‘lack of control’’, indicating that
the process is unstable. Shewhart control charts are
based on the Central Limit Theorem, which means
the sampling distribution will follow the normal
distribution, regardless of the shape of the under-
lying population distribution when sample size n is
sufficiently large. If the population distribution is
symmetric, then even with n ¼ 4 or 5, the sampling
distribution tends to approach the normal distri-
bution. However, as most environmental data, such
as blanks for contamination, are not commonly run
in replicate, the Shewhart control charts for means
and ranges are not usually applicable. In this case, a
special type of control chart for individual mea-
surements based on moving ranges of observations
(the so-called IX–MR chart; Wadsworth et al.,
1986, p. 192), is used for monitoring the blank re-
sults. The moving range of a series of observations
xi ði ¼ 1; . . . ; nÞ is commonly defined as MRi ¼
jxi � xi�1j for i ¼ 2; . . . ; n. Since the Central Limit
Theorem cannot be applied to the distribution of
individual measurements, a Lack of Fit test must be
conducted on the blank measurements before set-

ting up the control limits. Once normality of the
measurements has been confirmed, the trial control
limits for the individual values are commonly es-
tablished as follows (Wadsworth et al., 1986,
p. 192):

UCL ¼ l̂l þ 3r̂r ¼ l̂l þ E2MR ¼ l̂l þ 2:66MR;

LCL ¼ l̂l � 3r̂r ¼ l̂l � E2MR ¼ l̂l � 2:66MR;

where l̂l represents the process mean, E2 is a con-
stant which depends on the number of observa-
tions used for the moving ranges (and E2 ¼ 2:66
when consecutive pairs of observations are used),
and MR ¼

Pn
i¼2 MRi=ðn� 1Þ represents the aver-

age of the moving ranges.

3.3. Evaluation

If the blank measurements are within the UCL
and LCL and only a random pattern of variation
occurs, then this process is said to be in statistical
control or stable. As long as the blank results are
in control, then process performance can be pre-
dicted by process capability analysis. Process ca-
pability analysis compares the inherent variability
of the process with the specification limits, in our
case emission limits, so that the environmental
performance potential can be detected under
normal, in-control conditions. The process capa-
bility index, defined as Cp ¼ ðUSL� LSLÞ=ð6r̂rÞ,
where r̂r is the estimated standard deviation of the
process under statistical control, is the specifica-
tion range divided by the process spread. It mea-
sures potential capability, assuming that the
process average is equal to the midpoint of the
specification range and that the process is in
control (Juran and Gryna, 1993). Using 6r̂r as the
denominator is equivalent to defining the Cp index
to be equal to 1 whenever the specification limits
are three process standard deviations away from
the mean. This has been found to be a useful
benchmark for quality applications; for environ-
mental control purposes, it is unknown whether a
different range than 6r̂r might be more appropri-
ate. More experience is needed with different
processes and regulatory environments in order to
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determine suitable benchmarks for the environ-
mental case.

In environmental contexts, however, one nor-
mally only faces an upper specification limit
(USL); there is of course no lower specification
limit for minimum emission levels. In such a case,
the Cp index is given by Cp ¼ ðUSL� l̂lÞ=ð3r̂rÞ.
The Cpk index, on the other hand, reflects the
current process mean’s proximity to the USL or
LSL. Cpk is estimated by

Cpk ¼ minfðUSL� l̂lÞ=ð3r̂rÞ; ðLSL� l̂lÞ=ð3r̂rÞg

(Juran and Gryna, 1993). When no Lower Speci-
fication Limit exists, Cpk ¼ ðUSL� l̂lÞ=ð3r̂rÞ ¼ Cp.
Montgomery (1996) shows several values of the Cp
indices, along with the associated values of process
fallout, expressed in non-conforming parts per
million (ppm). These potential process defectives
or fallouts were calculated based on a normal
distribution of the key quality characteristics. For
example, Cp ¼ 1:0 indicates there will be 1350 ppm
for USL only and 2700 ppm for a two-sided
specification; Cp ¼ 0:5 indicates 66,807 ppm and
Cp ¼ 1:3 indicates 48 ppm for one-sided specifi-
cations, etc. The potential risk of process con-
tamination can thereby be determined.

The Shewhart and IX–MR charts are most ef-
fective for detecting contamination when measure-
ment variability is small relative to the level of
contamination to be detected. However, many
measurements may be required to be able to detect
small sustained shifts in the process mean. CUSUM
charts are better tools for detecting small shifts of
the process mean compared to the other candidates,
such as EWMA charts (Gan, 1998; Pan and Lin,
1999). The traditional CUSUM chart directly in-
corporates all the information in the sequence of
sample values by plotting the cumulative sums of
the deviations of the sample values from a target
value (Hansen and Ghare, 1987; Montgomery,
1996). To better understand the basic principles of
CUSUM charts, let xj denote the measurement of
the jth sample blank and let l be the target for the
process mean. TheCUSUMchart is then formed by
plotting the cumulative sum up to and including the
ith sample, i.e. plotting the quantity Si ¼

Pi
j¼1

ðxj � lÞ against the sample blank number i. Nor-

mally, one uses a V block or mask to detect process
shifts. If the process mean shifts upward or down-
ward, out-of-control points will lie outside the up-
per or lower arm of the mask. In the following
example, we demonstrate the use of CUSUMcharts
for processmonitoring and apply process capability
concepts for assessing the potential risk of
contamination.

4. An application of environmental control charts

In this section, we describe a step-by-step pro-
cedure for applying environmental control charts
and performing process capability analysis; we il-
lustrate the procedure using nitrate concentration
data from Lewis (1988).

4.1. Step 1. Identify the key process indicators and
metrics

Clearly, identifying which process indicators
need to be monitored is a critical first step. Several
criteria play a role in identifying these key process
indicators:
• Regulation: any emissions that are subject to

regulatory limits should be constantly moni-
tored and controlled, to minimize the number
of non-compliances and hence penalties or other
negative consequences.

• Risk: any process variables that are indicators of
potential accidents should also be selected, as
part of an effective risk management program.

• Public awareness: some types of emissions are
not subject to regulatory limits as such, or the
level of emissions at the facility in question
may be well within the limits specified, but if
emissions are tracked and publicly reported,
firms may wish to monitor and control them
anyway. For instance, the Toxic Releases Inven-
tory (TRI) data on emissions of all facilities
above a certain size, collected by the EPA in
the US, are now available on the Internet
through the Environmental Defense Fund’s
website at www.scorecard.org.
Practitioners who have gone through the process

of implementing an environmental management
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system, especially along the lines of ISO 14001, of-
ten find that this step, known as ‘‘identification of
aspects and impacts’’, is the most challenging. For
many firms, especially less-heavily regulated firms,
it is the first time they attempt to systematically
identify all areas in which they have significant en-
vironmental impact, and to measure that. Such
impact assessments are often somewhat subjective
in nature; the SPC-based approach we advocate
here allows a far more quantitative and precise
measurement.

4.2. Step 2. Collect the data using an appropriate
data sheet

After selecting the key process indicators to be
monitored and controlled, the nitrate concentra-
tion level in our example, we usually need 20
samples to develop the trial limits (see for instance
Wadsworth et al., 1986, p. 191). The data, from
Lewis (1988), are shown in Table 1. The first 20
nitrate concentration blank results correspond to
phase I (the base period); blank results 21–60
represent the subsequent blank measurements for
phase II (the monitoring period).

4.3. Step 3. Examine the distribution of the histor-
ical data and perform an appropriate transforma-
tion, then plot the data onto an IX–MR chart or
other suitable charts

Since the original 20 historical data are signifi-
cantly skewed, the raw data were transformed by
taking the natural logarithm of each value. After
this transformation, the data show significant im-
provement in the normality test. The Kolmogorov–
Smirnov test statistic for normality with Lilliefors

significance level is 0.13, less than the critical value
of 0.294 (for n ¼ 20 at 5% significance level). In
other words, we cannot reject the hypothesis of
normally distributed disturbances, but given that
the sample size is only 20, we cannot confidently
accept the normality hypothesis either. The Shap-
iro–Wilks statistic is 0.902 with corresponding
p-value of 0.0466, suggesting that we marginally
reject the hypothesis of normality at a 5% signifi-
cance level but would accept it at any higher level.
Fig. 1 shows the IX–MR charts for the transformed
nitrate concentration data. If the logarithm, inverse
and square root transformations (themost common
ones) fail, we might consider using the Johnson
transformation (Pan and Lin, 1999; Polansky et al.,
1999) to transform non-normal data to normal
data.

4.4. Step 4. Establish the trial control limits for the
IX–MR charts by eliminating the out-of-control
points

To develop trial limits for future monitoring,
we must eliminate the out-of-control points
whenever there exist special causes of variation
(assignable causes) for these points, as they can-
not be considered normal conditions for the
process. We first eliminate the outliers for the
MR chart and check the stability of the chart,
then remove the outliers for the IX chart and
check for the stability too. As one can see from
both IX and MR charts shown in Fig. 1, obser-
vation 11 is an outlier as it lies above the tenta-
tive UCL. Fig. 2 shows that, after removing the
outlier, the IX–MR charts passed the stability test
for both the mean and variability. Therefore, the
trial control limits for the IX–MR charts can be

Table 1

Nitrate blank measurements data from Lewis (1988)

Phase I 0.033 0.049 0.002 0.002 0.008 0.002 0.014 0.016 0.009 0.009

1.631 0.063 0.042 0.022 0.093 0.022 0.002 0.002 0.031 0.004

Phase II 0.006 0.028 0.021 0.020 0.031 0.002 0.002 0.026 0.040 0.726

0.081 0.089 0.128 0.053 0.019 0.353 0.353 0.389 0.066 0.731

0.283 0.277 0.213 0.452 0.288 0.051 0.056 0.253 0.054 0.097

0.672 0.221 0.206 0.293 0.128 0.431 0.180 0.108 0.052 0.216
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determined. The normality tests also improve
after eliminating the outlier.

4.5. Step 5. Perform the initial process capability
analysis for phase I (the base period) to justify the
baseline for assessing the environmental risk

Fig. 2 shows that the nitrate blank process is in
statistical control, so a process capability analysis
can be performed to determine the Cp and Cpk in-
dices. In the nitrate concentration example, only an
USL is given, with USL¼ 1%. Note that the USL
for the transformed data is USL ¼ lnð1Þ ¼ 0%. The
top chart in Fig. 3 shows that the transformed ni-
trate concentration data follow a normal distribu-
tion and that Cp ¼ Cpk ¼ 1:141, which means the

process fallout is approximately 320 ppm. Since
Cp ¼ Cpk > 1, we may conclude that the initial
process capability with respect to contamination
risk is quite low. The probability of rejection (i.e. a
nitrate concentration that is not in compliance with
the USL) is 0.032%.

4.6. Step 6. Use the CUSUM chart for detecting
small sustained shifts of the process mean if necessary

The top chart in Fig. 4 shows the IX chart for
phase II (the monitoring period). Note that the
trial limits are based on Step 4 (Section 4.4). The
lower chart in Fig. 4 indicates that the CUSUM
chart can be applied for early detection of process
changes. The V block shows that the process mean

Fig. 1. IX–MR charts for nitrate blank measurements (phase I).

Note: The top chart contains the IX chart, the lower chart contains the MR chart for the nitrate concentration data (after logarithmic

transformation) during the trial period (phase I). The dotted lines indicate the tentative LCL and UCL.
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shifts downward and we can detect such a trend at
point 5. Compare this to the top chart in Fig. 4,
where the IX–MR chart detected the change at
point 11. This illustration is consistent with the
earlier observation that CUSUM charts are more
effective in detecting changes in process mean than
traditional IX–MR charts (Pan and Lin, 1999). In
reality, this will lead the decision maker to pro-
actively respond to the out-of-control situation
and correct the problems in a timely manner.

4.7. Step 7. Continue to monitor environmental data
using the trial limits and take corrective measures
for out-of-control situations

Analysis of out-of-control situations needs to
be addressed in order to improve the stability and
capability of the process. Periodic review of the
specifications in relation to the process capability
should be conducted on a regular basis. The lower

chart in Fig. 3 shows that the process capability
has deteriorated during the monitoring period to
Cp ¼ Cpk ¼ 0:822 < 1, which indicates the poten-
tial risk for unacceptable nitrate contamination
levels has increased from approximately 320 ppm
to approximately 8000 ppm. The probability of
rejection is 0.8%, which means the environmental
risk is much higher than it was during the initial
baseline period. Corrective measures need to be
taken to prevent future non-compliances.

5. Evaluating environmental performance using

process capability indices

The procedure proposed in the previous section
uses cumulative sums of observations to allow
operators to detect process shifts earlier than they
might be able to with a traditional IX–MR chart.
In addition, the information used to construct the

Fig. 2. Setting up trial control limits after removing out-of-control points.

Note: The top chart contains the IX chart, the lower chart contains the MR chart for the nitrate concentration data (after logarithmic

transformation) during the test period (phase I). The dotted lines indicate the LCL and UCL.
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CUSUM chart is used to perform process capa-
bility analyses, to determine the likelihood of the
process entering an out-of-control state, or, in this
case, an unacceptable emissions level.

5.1. Environmental risk assessment using process
capability indices

It is particularly the process capability analysis
that can help decision-makers assess whether the

process is capable of complying with existing en-
vironmental legislation for a sufficiently large
proportion of time. We will illustrate how the
process capability analysis can be used in con-
junction with risk assessment tools used in a
quality control context.

A well-known tool for risk assessment is failure
mode and effect analysis (FMEA), as described in
for instance Kolarik (1995). Sometimes a criticality
analysis component is added to this, as for instance
in the D1-9000 standards at Boeing. This involves

Fig. 3. Process capability analyses for nitrate concentration data.

Note: The top figure corresponds to phase 1, the trial period; the bottom figure corresponds to phase II, the monitoring period.
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identifying each process step that may fail, then
assigning rankings for occurrence probability, se-
verity, and detectability. The ‘‘occurrence ranking’’
indicates how likely a failure is considered to be
(where higher scores correspond to higher proba-
bilities), and is related to the process capability in-

dices. The ‘‘severity ranking’’ indicates the potential
impact of a failure (with higher scores correspond-
ing to more serious impact). The ‘‘detectability
ranking’’ indicates how likely it is that a failure can
go undetected until its full impact materializes; in
the traditional quality control setting, this is the

Fig. 4. Control charts for the nitrate blank measurements (phase II).

Note: The top figure shows the IX chart, the lower figure shows the CUSUM chart for the nitrate concentration data (after logarithmic

transformation), for the monitoring period (phase II).
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probability of shipping products containing an un-
detected defect. Higher scores again correspond to
higher probability of defects going undetected. The
three rankings are then multiplied, and higher total
scores indicate higher risk.

As noted above, with a one-sided specification
limit, aCp ¼ Cpk ¼ 0:5 would indicate 66,807 ppm;
Cp ¼ Cpk ¼ 1:0 indicates 1350 ppm; and Cp ¼
Cpk ¼ 1:3 indicates 48 ppm. During the failure
mode and effect analysis for Cpk ¼ 0:5, the occur-
rence ranking suggests a very high probability of
occurrence. From the viewpoint of the person
evaluating the process, a non-compliance is almost
certain to occur; the highest-ranking score is usually
assigned in such a case. However, forCpk ¼ 1:3, the
probability of occurrence is remote; the lowest
ranking score is usually assigned in this case. Other
risk assessment tools, such as severity and detect-
ability ranking, can also be applied to an environ-
mental FMEA.

Though clearly the latter case corresponds to a
process that is far more tightly controlled, the
analysis does not tell us which capability level is
required for any specific instance. Whether a Cp ¼
Cpk ¼ 1:3 is sufficient (as in many manufacturing
industries) or a Cp ¼ Cpk ¼ 1:67 is needed (com-
mon in the electronics industry) depends, as always,
on the cost of Type I and Type II errors. Given that
the processes for which the approach proposed in
this paper is most applicable will often be relatively
heavy continuous and semi-continuous industrial
processes, the cost of stopping the process for a false
alarm might be very substantial. The cost of ex-
ceeding the emissions limits can also vary widely,
depending on the type of emission, the exact legis-
lation and measurement methods, and other fac-
tors. We are currently investigating economic
design of CUSUM charts to incorporate these fac-
tors, and are also engaged in applying these links
between risk assessment and process capability
analysis in a chemical plant.

5.2. Process capability indices and environmental
regulation

Another audience that could benefit from
process capability analysis is formed by the

regulatory community. Just as customers often
inspect their suppliers’ quality by requiring them
to submit their control charts and other SPC
analyses, regulators could assess a firm’s degree
of compliance by evaluating its process capabil-
ity analysis. The regulator could use this in
several ways. First, the process capability anal-
ysis indicates how many non-compliance situa-
tions one would expect over a given period of
time; the regulator can then compare that to the
number of non-compliances actually found,
whether during its own monitoring efforts or
audits, during third-party audits, or through the
firm’s self-reported environmental performance.
Second, the process capability analysis can help
a regulator decide where to allocate scarce
monitoring and audit resources. Almost no en-
vironmental regulatory agency in the world has
sufficient resources to ensure permanent compli-
ance of all facilities under their oversight, and
prioritizing their monitoring and enforcement
efforts is a major challenge. A firm that can
demonstrate a high process capability level
would require far less frequent audits than a firm
with a low capability level. Third, process ca-
pability analyses are easier to compare across
firms than many other metrics are, such as
number of non-compliances, total emissions, etc.
This means that regulators can use process ca-
pability analyses to benchmark environmental
performance of comparable firms, and can better
assess when firms’ complaints about (proposed)
regulations being too strict are justified or ex-
aggerated. Each of these potential uses of pro-
cess capability analyses naturally also applies to
third-party auditors, such as ISO 14001 auditors.

6. Differences between quality control and environ-
mental management

We should emphasize that, although applying
SPC tools to environmental monitoring has sub-
stantial potential, whether for air, water or other
emissions, it is by no means a direct and standard
application. There are some important differences
between the quality control setting and the envi-

80 C.J. Corbett, J.-N. Pan / European Journal of Operational Research 139 (2002) 68–83



ronmental monitoring case that apply equally to
the air and water emissions cases.

First, in a majority of quality control situations,
the specification limits are bilateral, i.e. deviations
from the mean in either direction are undesirable.
This is true whether the process involved is a
packaging filling line, a machining operation, or
one of many other possibilities. For environmental
control, however, specification limits are always
unilateral: emissions may not exceed a certain
limit, but there is (clearly) no lower limit. This
problem certainly has been studied in the SPC
literature (see for instance Ghosh et al., 1997 or
Pan and Wu, 1996), but nowhere near as exten-
sively as the bilateral case.

Second, in traditional quality settings, the
specification limits generally apply per unit,
where the units are the same as the measurement
units used in monitoring. On a machining op-
eration, the aim is to avoid a single widget from
falling outside the specification limits. In the
environmental case, however, the specification
limits depend on the prevailing legislation, and
will often concern cumulative or average emis-
sions over longer periods, whether hourly, daily,
or monthly. In that case, one could be moni-
toring the process using daily emissions data,
with no specification limits on daily emissions
themselves, but only an upper limit on total
monthly emissions. This complicates the design
of the control chart and, to our knowledge, such
a situation has not yet been studied in the SPC
literature.

Third, most traditional SPC settings assume
that the underlying stochastic process is univar-
iate and stationary, producing uncorrelated ob-
servations. Data used in environmental
monitoring, though, are more likely to be mul-
tivariate and/or correlated, as several types of
emission are regulated and these are more
heavily influenced by other common ambient
factors: for instance, SO2 and NOx emissions are
driven in part by the product mix being pro-
duced during that period, leading to significant
correlation over time in emissions data and
across emission types. Some recent developments
in the SPC literature have considered both
multivariate and correlated observations (see for

instance Lu and Reynolds, 1999; Montgomery
and Mastrangelo, 1991; Woodall and Faltin,
1993), but this is a largely open area and needs
to be further explored.

7. Conclusions and future research

In this paper, we describe a detailed quantitative
procedure for monitoring and evaluating environ-
mental performance. We show how an appropriate
modification of existing statistical quality control
techniques, in particular the CUSUM chart and
corresponding process capability analysis, can be
very useful for environmental process management
and monitoring. We have discussed how this would
work, using an extended example based on nitrate
contamination data. Drawing on existing theory
and based on the example, we suggest that CUSUM
charts are valuable for emissions monitoring, as
they tend to detect process shifts earlier than tra-
ditional IX–MR charts. The process capability
analysis is particularly promising, as this gives de-
cision-makers a concrete tool, to our knowledge for
the first time, to assess the likelihood that their
process will continue to comply with prevailing
legislation. We have examined how process capa-
bility analysis is useful as a risk management tool
for practitioners but also how it can benefit regu-
latory agencies.

Applying principles of statistical quality con-
trol to environmental management opens up
many promising areas of research. First, one
needs to continue to analyze and compare vari-
ous types of charts, using emissions data rather
than defect rates, to determine which design is
appropriate for monitoring emissions. More ex-
tensive comparisons of traditional IX–MR charts
with CUSUM and other charts should be per-
formed. Second, we believe that emissions mon-
itoring is a natural application of economic
control charts, for which extensive theory exists
but relatively little practical implementation.
More theory and more practical guidelines on
economic design of control charts, specifically for
emissions monitoring, is called for. Third, better
understanding of the precise form of regulatory
requirements is needed: the appropriate control
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charts and process capability measures depend
on whether emission rates may never exceed a
certain limit or whether it is average emissions
per unit time that are restricted, etc. We hope
that this paper will provide the motivation for
some of this work.
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