Bayesian Spatiotemporal Varying Coefficients Model to the Mortality Rate of Ischemic Stroke in Taiwan

Kuo-Jung Lee

Department of Statistics, NCKU

March 12, 2020

Motivation

- Stroke remains a major global health problem and its significance is likely to increase in the future due to ongoing demographic changes, including aging of the population and health transitions observed in Taiwan.
- A Bayesian spatiotemporal generalized linear regression with varying-coefficient model is proposed to study the association of the relevant risk factors:
 - comorbidities;
 - medication use; and
 - environmental and social factors.
- To provide more effective medical service behaviors and improve the distribution of medical resources, thus preventing the second stroke and reduce mortality after stroke.

Mortality

Figure 1: The distribution of fatality in ischemic stroke within 1 year for 349 townships in Taiwan from 2004 to 2012. The urbanized areas are surrounded in pink lines.

Figure 2: LISA cluster map of the fatality in ischemic stroke within 1 year for 349 townships in Taiwan from 2004 to 2012.

Kuo-Jung Lee (Department of Statistics)

Time-Varying Coefficient Models

Mortality Rate

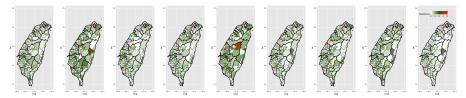


Figure 3: The distribution of fatality rate in ischemic stroke for 349 townships in Taiwan from 2004 to 2012.

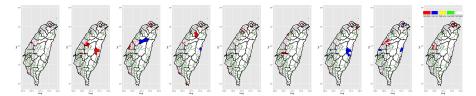


Figure 4: LISA cluster map of fatality rate in ischemic stroke for 349 townships in Taiwan from 2004 to 2012.

Statistical Modeling

Let

- Y_{it} : observed number of deaths
- E_{it} : expected number of deaths

caused by the ischemic stroke for town i at time point t within one year.

Assume Y_{it} follows a Poisson distribution

$$Y_{it} \sim \operatorname{Poi}(E_{it}e^{\eta_{it}}), i = 1, \ldots, n, t = 1, \ldots, T.$$

We define the logarithm of the relative risk as

$$\eta_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \phi_{it} + \psi_t,$$

where $x_{it} = (x_{it1}, \ldots, x_{itp})'$ and $\beta = (\beta_1, \ldots, \beta_p)'$ is the corresponding coefficient vector. We let $E_{it} = n_{it}\hat{p}_i$, where n_{it} is the number of observations at area *i* and time point *t* and \hat{p}_i is the estimated incidence rate at area *i*.

變數説明

種類	項目	説明(括號內爲該項目之單位)	
共病症	AF CHF CKD DM HTN IHD lipid	 該城市首次中風病患送至醫院時合併有該共病症之病患比例 心房顫動(%) 心衰竭(%) 慢性腎臟病(%) 穩尿病(%) 喬血壓(%) 缺血性心臟病(%) 血腦異常(%) 	
病發後用藥	beta ccb diu acei coa pla statin TPA	<u>該城市首次中風病患病發後每人每日平均使用藥品定義日劑量</u> β – blocker, β 受體阻斷劑(DDD) Calcium channel blockers, 勞藥子通道阻斷劑(DDD) Diuretics, 利尿劑(DDD) ACEIs/ARBs, 降血壓藥物(DDD) Anticoagulants, 抗凝血藥物(DDD) Antiplatelet agents, 抗血小板藥物(DDD) Statins, 降血脂劑(DDD) rt-PA, 合成組織胞漿素原活化劑(DDD)	
環境社會因子	pm25 copd edu bed income old ori sex ssi	 該城市內之各項環境與社會因子 平均細懸浮微粒(PM 2.5) 濃度(μg/m³) 抽菸人口比例,以慢性肺阻塞病量行率代表其抽菸比率(%) 15 歲以上受大專以上(含肆業) 教育人口比例(%) 総病床數占全國總病床數之比例(%) 公勞保投保人之平均薪資(千元)(%) 65 歲以上人口比例(%) 原住民人口比例(%) 男性人口比例(%) 對代人口比例(%) 首次缺血性中風病患之平均中風嚴重度參數(SSI) 	

Kuo-Jung Lee (Department of Statistics)

Temporal Dependency

Temporal Dependence: AR

Assume
$$\psi_t \sim \mathcal{N}\left(\zeta \psi_{t-1}, \sigma_{\psi}^2\right)$$
 and $\zeta \sim \mathcal{U}(-1, 1)$ and $\sigma_{\psi}^2 \sim \mathcal{IG}\left(\frac{a_{\psi}}{2}, \frac{b_{\psi}}{2}\right)$.

Spatial Dependence: MCAR

Let $\phi = (\phi_1, \dots, \phi_n)'$ be the vector of spatial random effects.

$$\boldsymbol{\phi}|\boldsymbol{\lambda}, \boldsymbol{\rho} \sim \mathcal{N}_{I}\left(\boldsymbol{0}, \boldsymbol{\lambda}\boldsymbol{Q}\left(\boldsymbol{W}, \boldsymbol{\rho}\right)^{-1}\right), \tag{1}$$

where

$$\boldsymbol{Q}(\boldsymbol{W},\rho) = \rho(\operatorname{diag}(\boldsymbol{W}\boldsymbol{1}) - \boldsymbol{W}) + (1-\rho)\boldsymbol{I}.$$

W is the proximity matrix with the (i, j)th element $w_{ij} = 1$ if i and j are neighbor; otherwise $w_{ij} = 0$, and I is an $I \times I$ identity matrix. More precisely,

$$\phi_i | \phi_{-i}, \mathbf{W}, \lambda, \rho \sim \mathcal{N}\left(\frac{\rho \sum_{i' \sim i} w_{i'i} \phi_{i'}}{\rho \sum_{i' \in \sim i} w_{i'i} + 1 - \rho}, \frac{\lambda}{\left(\rho \sum_{i' \in \sim i} w_{i'i} + 1 - \rho\right)}\right),$$

In addition,

$$ho \sim U(0,1) \quad ext{and} \quad \lambda \sim \mathcal{IG}\left(rac{a_\lambda}{2},rac{b_\lambda}{2}
ight).$$

Results

			95%Credit	ole Interval
Туре	Variable	Estimate	2.5%	97.5%
	AF	0.0002	-0.0042	0.0047
	CHF	0.0036	-0.0002	0.0074
	CKD	0.0076	0.0024	0.0134
Comorbidities	DM	0.0013	-0.0014	0.0040
	HTN	0.0037	0.0020	0.0070
	IHD	0.0033	0.0005	0.0059
	lipid	-0.0056	-0.0083	-0.0030
	beta	-0.80	-1.31	-0.31
	ccb	-0.03	-0.22	0.15
	diu	0.38	0.09	0.66
Medication Use	acei	-0.16	-0.32	-0.01
	coa	-0.94	-2.15	0.28
	pla	-0.14	-0.30	0.04
	statin	0.12	-0.11	0.34
	TPA	-2.63	-3.93	-1.38
	pm25	0.0016	-0.0009	0.0041
	copd	0.0037	-0.0018	0.0092
	edu	-0.0013	-0.0062	0.0035
	bed	0.0584	0.0332	0.0834
Environmental &	income	0.0049	-0.0007	0.0114
Social Factor	old	-0.0008	-0.0020	0.0079
	ori	-0.3512	-0.5634	-0.1433
	sex	0.0153	-0.0161	0.0472
	ssi	0.1543	0.1321	0.1822

However

 In reality, the variable may have different effects on the mortality in different areas and time points.

 In practice, there may exist the similar spatial patterns for the time-varying coefficients not only in local but also in remote areas.

Statistical Modeling

Let

 Y_{it} : observed number of deaths

 E_{it} : expected number of deaths

caused by the ischemic stroke for town i at time point t.

Assume Y_{it} follows a Poisson distribution

$$Y_{it} \sim \text{Poi}(E_{it}e^{\eta_{it}}), i = 1, ..., n, t = 1, ..., T.$$

We define the logarithm of the relative risk as

$$\eta_{it} = \mathbf{x}'_{it} \boldsymbol{\beta}_{it} + \phi_i + \psi_t$$

where $x_{it} = (x_{it1}, \ldots, x_{itp})'$ and $\beta_{it} = (\beta_{it1}, \ldots, \beta_{itp})'$ is the corresponding time-varying coefficient vector.

Spatial and Temporal Dependencies

Spatial Dependence: MCAR

Let $\phi = (\phi_1, \dots, \phi_n)'$ be the vector of spatial random effects.

$$\boldsymbol{\phi}|\lambda, \rho \sim \mathcal{N}_{\boldsymbol{I}}\left(\boldsymbol{0}, \lambda \boldsymbol{Q}\left(\boldsymbol{W}_{\mathcal{S}}, \rho\right)^{-1}\right),$$

where

$$\boldsymbol{Q}(\boldsymbol{W}_{\mathcal{S}}, \rho) = \rho(\operatorname{diag}(\boldsymbol{W}_{\mathcal{S}}\boldsymbol{1}) - \boldsymbol{W}_{\mathcal{S}}) + (1 - \rho)\boldsymbol{I}_{\mathcal{S}}$$

 W_S is the proximity matrix with the (i, j)th element $w_{ij} = 1$ if i and j are neighbor; otherwise $w_{ij} = 0$, and I_S is an $I \times I$ identical matrix. In addition,

$$ho \sim U(0,1) \quad ext{and} \quad \lambda \sim \mathcal{IG}\left(rac{a_\lambda}{2},rac{b_\lambda}{2}
ight).$$

Temporal Dependence: AR

Assume
$$\psi_t \sim N\left(\zeta \psi_{t-1}, \sigma_{\psi}^2\right)$$
 and $\zeta \sim U(-1, 1)$ and $\sigma_{\psi}^2 \sim \mathcal{IG}\left(\frac{a_{\psi}}{2}, \frac{b_{\psi}}{2}\right)$.

Variable Selection

- One important goal in this study is to detect which variables play an crucial role in affecting the mortality in stroke, that is which β_{it} ≠ 0.
- A vector of categorical random variables, γ_t = (γ₁₁,..., γ_{nt})^T to indicate whether β_{it} equals to 0 or not, that is,

$$\beta_{it} \begin{cases} = 0 \quad \gamma_{it} = 0; \\ \neq 0 \quad \gamma_{it} \neq 0. \end{cases}$$

• The time-varying regression coefficients β_{it} follow

$$\beta_{it}|\gamma_{it} \sim \prod_{g_t=1}^{G_t-1} \left[N\left(\alpha_{g_t}, \sigma_{g_t}^2\right) \right]^{\mathbb{I}\{\gamma_{it}=g_t\}} \delta_0^{\mathbb{I}\{\gamma_{it}=G_t\}},$$

where δ_0 is the point mass at zero and $P(\gamma_{it} = g_t) = \pi(\gamma_{it}|\theta_t) = \tau_{igt}$. We assume $\sigma_{g_t}^2 \sim \mathcal{IG}\left(\frac{a_{\sigma}}{2}, \frac{b_{\sigma}}{2}\right)$.

Remote & Local Patterns

Remote Pattern: Mixture Model

The mixture part $\sum_{g_t=1}^{G_t} \tau_{gt} N\left(\alpha_{g_t}, \sigma_{g_t}^2\right)$ is used to describe the remote areas that show similar patterns to a variable.

Local Pattern: Potts Model

The Potts model for γ_t to account for the neighboring areas that behave similarly:

$$\pi(\boldsymbol{\gamma}_t|\boldsymbol{\theta}_{jt}) \propto \exp\left\{\sum_{i=1}^n \sum_{g_t=1}^{G_t} \kappa_{g_t} \mathbb{I}\left\{\gamma_{it} = g_t\right\} + \theta_t \sum_{i \sim i'} u_{i,i'} \mathbb{I}(\gamma_{it} = \gamma_{i't})\right\},\$$

where

- $u_{i,i'}$: the wights of the interaction between neighboring locations.
- θ_t : the strength of the interaction between any two areas at time t.
- $\sum_{i,g} \kappa_{g_t} \mathbb{I} \{ \gamma_{it} = g_t \}$: the "external field" to incorporate the prior info.

Posterior & MCMC

• We do a component-wise MCMC approach for model estimation.

• But some of these requires Metropolis-Hastings-within-Gibbs.

Update β and γ

- Update of β and γ simultaneously.
- The proposal distribution of β and γ is the joint prior distribution $q(\beta, \gamma | \theta, \alpha, \sigma)$.
- Assume β^* and γ^* are the candidate and and then accept the proposed value with probability $\min(1, r_{\beta, \gamma})$ and the Hastings ratio is $r_{\beta, \gamma} = \frac{p(\beta^*, \gamma^*|y)}{p(\beta, \gamma|y)} \frac{q(\beta, \gamma)}{q(\beta^*, \gamma^*)} = \frac{p(y|\beta^*, \gamma^*)q(\beta^*, \gamma^*)}{p(y|\beta, z)q(\beta, \gamma)} \frac{q(\beta, \gamma)}{q(\beta^*, \gamma^*)} = \frac{p(y|\beta^*, \gamma^*)}{p(y|\beta, \gamma)}.$

Update θ : Spatial Dependence

$$p(\theta_t) = \frac{1}{Z(\theta_t, \kappa_{g_t})} \exp\left\{\sum_{i=1}^n \sum_{g_t=1}^{G_t} \kappa_{g_t} \mathbb{I}\left\{\gamma_{it} = g_t\right\} + \theta_t \sum_{i \sim i'} u_{i,i'} I(\gamma_{it} = \gamma_{i't})\right\}$$

where

$$Z(\theta_t, \kappa_{g_t}) = \sum_{\gamma} \exp\left\{\sum_{i=1}^n \sum_{g_t=1}^{G_t} \kappa_{g_t} \mathbb{I}\left\{\gamma_{it} = g_t\right\} + \theta_t \sum_{i \sim i'} u_{i,i'} I(\gamma_{it} = \gamma_{i't})\right\}$$

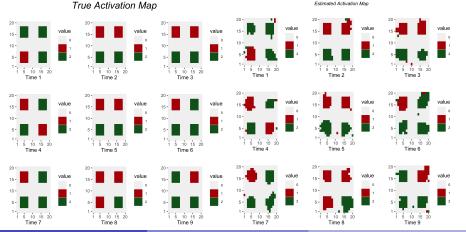
Update θ (Cont'd)

Then generate a proposal θ_t^* from a proposal density $q(\theta)$.

Then set $\theta = \theta^*$ with probability the minimum of 1 and the Hastings ratio

$$\frac{Z(\theta_t, \kappa_{g_t})}{Z(\theta_t^*, \kappa_{g_t})} \frac{\exp\left\{\sum_{i=1}^n \sum_{g_t=1}^{G_t} \kappa_{g_t} \mathbb{I}\left\{\gamma_{it} = g_t\right\} + \theta_t^* \sum_{i \sim i'} u_{i,i'} I(\gamma_{it} = \gamma_{i't})\right\}}{\exp\left\{\sum_{i=1}^n \sum_{g_t=1}^{G_t} \kappa_{g_t} \mathbb{I}\left\{\gamma_{it} = g_t\right\} + \theta_t \sum_{i \sim i'} u_{i,i'} I(\gamma_{it} = \gamma_{i't})\right\}} \frac{q(\theta)}{q(\theta^*)}$$

The ratio


$$\frac{Z(\theta,\kappa_{g_t})}{Z(\theta^*,\kappa_{g_t})}$$

is analytically intractable but can be estimated with path sampling.

Simulation Study: Setting 1

- We simulated data at all n = 400 areas on the 20×20 image for t = 9 time points with p = 2 covariates.
- For ease illustration, we consider $G_{it} = 2$ and use 1 and 2 to denote the active group membership and 0 for inactive group.

Estimated Activation Map

Kuo-Jung Lee (Department of Statistics)

March 12, 2020 19/31

Simulation Study: Setting 2

• We set $\alpha_{itg} = 1$ when $G_{ti} = 1$ and $\alpha_{itg} = -1$ when $G_{ti} = 2$.

- We simulate $\sigma_{it\sigma}^2 \sim \Gamma(1,1)$ and $\beta_{itg} \sim N(\alpha_{itg}, \sigma_{it\sigma}^2)$.
- Given $\lambda \sim \Gamma(1,1)$ and $\rho \sim U(0,1)$, we can compute $Q(W,\rho)$ and $\phi | \lambda, \rho \sim \mathcal{N}_{I} \left(\mathbf{0}, \lambda \boldsymbol{Q} \left(\boldsymbol{W}, \rho \right)^{-1} \right).$
- We simulate ψ from AR(1) with $\zeta = 0.5$.
- Then generate $Y_{it} \sim \text{Poi}(E_{it}e^{\eta_{it}}), i = 1, \dots, n, t = 1, \dots, T$, where $\eta_{it} = \mathbf{x}'_{it} \boldsymbol{\beta}_{it} + \phi_i + \psi_t.$

Simulation Study: Result

We calculate the accuracy of classifications of activations (ACA) for each time point by

$$\mathsf{ACA}_t = \frac{1}{N} \sum_{i=1}^N \mathtt{I}(\gamma_{it} = \hat{\gamma}_{it}).$$

where the assignment of an observation to a group is based on

$$\hat{\gamma}_{it} = \operatorname*{argmax}_{g \in 1...,G_t} \left\{ p(\gamma_{it} = g | y) \right\}.$$

Table 1: The accuracy of classification of (in)active variables.

ACA	2004	2005	2006	2007	Year 2008	2009	2010	2011	2012
1st Q	0.86	0.85	0.84	0.82	0.85	0.83	0.83	0.84	0.85
median	0.92	0.90	0.92	0.90	0.91	0.88	0.88	0.89	0.90
3rd Q	0.94	0.93	0.94	0.93	0.93	0.92	0.92	0.91	0.94

Simulation Study: Model Comparison

In order to investigate the performance of the proposed model, we compared the proposed model with several competing models. The models under consideration are as follows:

- Model 1: simple log-linear Poisson model with spatio-temporally constant coefficients ($\beta_{itp} = \beta_{ip}$) for **one**-component models.
- **2** Model 2: simple log-linear Poisson model with spatio-temporally constant coefficients ($\beta_{itp} = \beta_{ip}$) for **two**-component models.
- Model 3: log-linear Poisson model with spatially time varying coefficients for one-component models.
- Model 4: log-linear Poisson model with spatially time varying coefficients for two-component models.

Simulation Study: Model Comparison (Cont'd)

• The log marginal predictive likelihood (LMPL) is calculated through the log conditional predictive ordinate (CPO)

$$\mathsf{LMPL} = \sum_{i} \sum_{t} \log \mathsf{CPO}_{it} = \sum_{i} \sum_{t} \log f(y_{it}|y_{-it})$$

where CPO_{it} is the conditional predictive ordinate. A larger value of CPO indicates better prediction based on the model, and thus a model with a large value of LMPL implies better model of fit.

• Moreover, we calculate the mean square prediction error (MSPE) for the comparison of models in terms of prediction performance

$$\mathsf{MSPE} = \frac{1}{nT} \sum_{i} \sum_{t} (Y_{it} - \hat{Y}_{it})^2,$$

where \hat{Y}_{it} the predicted value for *i*th subject at time point *t* from the posterior predictive distribution.

Simulation Study: Model Comparison (Cont'd)

Table 2: Model comparison using AIC, BIC, DIC, MPL, and MSPE for the simulation study.

	Model			
Measurement	1	2	3	4
AIC	-2707	-5027	-3568	-10219
BIC	13293	13100	12433	5782
DIC	-28197	-30187	-29104	-45781
LMPL	720	541	744	754
MSPE	10.34	8.76	3.68	2.91

變數説明

種類	項目	說明(括號內爲該項目之單位)
共病症	AF CHF CKD DM HTN IHD lipid	<u>該城市首次中風病患送至醫院時合併有該共病症之病患比例</u> 心房顫動(%) 心衰竭(%) 慢性腎臟病(%) 穩虛腎(%) 商血壓(%) 缺血性心臟病(%) 血脂異常(%)
病發後用藥	beta ccb diu acei coa pla statin TPA	$\frac{\dot{a}\dot{u}\dot{d}\pi\dot{d}\dot{\chi}+\underline{R}_{A}\dot{a}_{A}\dot{a}_{A}\dot{d}\dot{\chi}+\underline{R}_{A}\dot{a}_{A}\dot{a}_{A}\dot{d}\dot{\chi}+\underline{R}_{A}\dot{a}_{A}\dot{d}_{A}\dot{\chi}+\underline{R}_{A}\dot{\chi}+$
環境社會因子	pm25 copd edu bed income old ori sex	<u> 該城市內之各項環境與社會因子</u> 平均麵懸浮微粒(PM 2.5) 濃度(μg/m ³) 抽菸人口比例,以慢性肺阻塞病盛行率代表其抽菸比率(%) 15 歲以上受大專以上(含肆業) 教育人口比例(%) 總病床數占全國總病床數之比例(%) 公勞保投保人之平均薪資(千元)(%) 65 歲以上人口比例(%) 原住民人口比例(%)

Kuo-Jung Lee (Department of Statistics)

Prediction

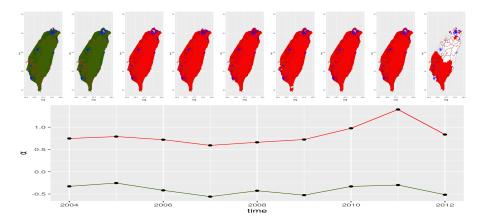


Figure 6: The distribution of fatality in ischemic stroke within 1 year for 349 townships in Taiwan from 2004 to 2012.

Figure 7: The distribution of predicted fatality in ischemic stroke within 1 year for 349 townships in Taiwan from 2004 to 2012.

降血脂劑(statin)

血栓溶解劑(rt-PA),利尿劑(diu)

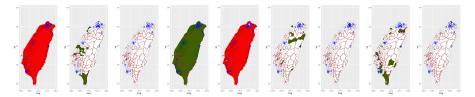


Figure 8: rt-PA. Red: Positive effect; Green: Negative Effect.

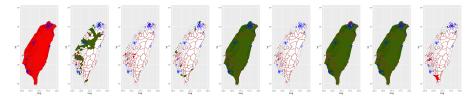


Figure 9: diu. Red: Positive effect; Green: Negative Effect.

抗血小板製劑(pla), 抗凝血劑(coa)

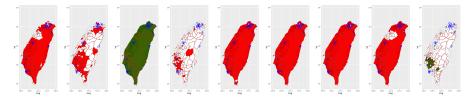


Figure 10: pla. Red: Positive effect; Green: Negative Effect.



Figure 11: coa. Red: Positive effect; Green: Negative Effect.

原住民人口比例(ori)

Figure 12: The distribution of originals.

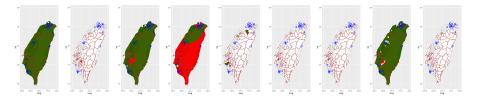


Figure 13: ori. Red: Positive effect; Green: Negative Effect.

Summary

- In varying coefficient models,
 - require computational effort;
 - allow to select important factors; and
 - model the local and remote spatial patterns.
- We conclude that
 - risks are spatially clustered, mostly in suburban areas; and
 - medical resources in remote areas should be strengthened to reduce the mortality.