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Blind Source Separation (Magic 17)

@ Low Rank Model: Z = AS, or columnwisely z[n] = As[n] [Lin'16a].
e A =Jai,...,an] is the spectral signature matrix.
@ S is the material abundance/distribution matrix.

@ The rank N, i.e., model order?

-ﬂ

[Lin'16a] Chia-Hsiang Lin et al., “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind
hyperspectral unmixing,” IEEE Trans. Signal Processing, vol. 64, no. 8, pp. 1946-1961, Apr. 2016.
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Parallel Computing of HyperCSI Algorithm (Basic)
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Even without parallel computing, HyperCSI has been about 10,000 times faster than
the benchmark MVC-NMF!



Model Order Selection (MOS) (Basic)

@ A fundamental topic in Machine Learning!
@ Information-theoretic minimum description/code length (MDL).

o The code length MDL(N) = —log(f(X | ©\)) + 1 D(©™)) log(L) induces
very complicated optimization (non-convex/non-smooth).

e Monte Carlo algorithm: high-dimensional Gaussian-Dirichlet convoluted integral.

@ Effective for many research domains:

MDL
MDL

3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 10 9
rat cell gene expression data  human blood microarray data brain disease molecular data hyperspectral remote sensing data
(3 cell types) (4 immune origins) (4 mRNAs) (9 minerals)

(source codes available)

[Lin'17a] Chia-Hsiang Lin et al., “Detection of sources in non-negative blind source separation by minimum description
length criterion,” IEEE Trans. Neural Networks and Learning Systems, 2018.



Decoding in Compressed Sensing (Magic 27)

@ "“All-addition hyperspectral compressed sensing for miniaturized satellite”
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Convex Optimization (Basic)
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Hyperspectral Inpainting (Magic 37)

densely populated stripes

’.

serious stripes




Léwner-John Ellipsoid (LJE) (Basic)

@ It is the maximum-volume ellipsoid inscribed in the data-constructed convex hull.

@ X': convex hull of dimension-reduced data.

@ £(F,c) 2 {Fu+c||ul2 <1}, where F
characterizes the semi-axis directions/lengths,
and c is the ellipsoid center.

@ Formulation:
max vol(E(F,c))
FER(IN=-DX(N—1) ccgN-1 (l)
s.t. 5(F,c) C X,

@ Solution:
o E(F,c) =&E(VFFT c), so we can
assume w.l.o.g. that F' € Sf;l.

e vol(E(F,c)) x logdet(F'), whose
negative is convex on Sf;l.

o E(F,c) C X is equivalent to a set of
convex second-order cone constraints
HszH < hz — b;TC, Vi = 1,...,m.
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LJE for Hyperspectral Inpainting (Basic)

Figure 1: Topology mapping between complete and missing matrices.
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Fast Super-resolution (Magic 47)

(a)
Figure: The 50th band of (a) Z, (b) Y}
and (c) the inversed Z by CO-CNMF on 3
data: Pavia University (top), Washington
DC (middle) and Moffett Field (bottom).
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Data Fusion Theory (Basic)

@ Hyperspectral data Yy,:
e high spectral resolution;
o low spatial resolution;
e bands: M > M,,

@ Multispectral data Y.,,:
e low spectral resolution;

e high spatial resolution;
e pixels: L > Ly

CO-CNMF
Algorithm
_

@ Super-resolved data Z:
e high spectral resolution; VL
e high spatial resolution.

@ Annual Data Fusion Contest, IEEE Geoscience and Remote Sensing Society
(GRSS). (Very important topic for remote sensing!)

@ State-of-the-art results in our recent paper [Lin'18a]! (source codes available)

[Lin'18a] Chia-Hsiang Lin et al., “A convex optimization based coupled non-negative matrix factorization algorithm for
hyperspectral and multispectral data fusion,” IEEE Trans. Geoscience and Remote Sensing, 2018.
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Metamaterial Design (Magic 57)
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No Magic, Only Basic!

There is no magic. There is only
knowledge. more or less hidden,

@ Next, we focus on ESA’s Sentinel-2 Satellite super-resolution problem.

14 /40



Super-resolution in Remote Sensing

® Why? “Remote” v.s. “Spatial resolution” (classification).

Y \\

Pavia University, Italy (ROSIS Sensor) Super-resolved Image by CO-CNMF

@ How? (sounds like magic)
Direct acquisition? (too expensive, hardware limitation)
Image fusion? (no high-resolution counterpart)
= “Single image super-resolution (SISR)”

15 /40



Single Image Super-resolution (SISR)

@ SISR for RGB images — a key topic for computer vision (CV) [Glasner'09]!

@ SISR for Sentinel-2 (a new satellite) multi-spectral images is challenging due to
- insufficient data to train the deep neural network;

- multi-resolution images (see next page).

[Glasner'09] D. Glasner et al., “Super-resolution from a single image,” IEEE International Conference on Computer Vision
(ICCV), 2009, pp. 349-356.



Sentinel-2 Satellite

@ Launched by European Space Agency (ESA) with the following specifications:

TABLE I
INFORMATION OF SPECTRAL BANDS FOR THE SENTINEL-2 SENSORS.
Band Bl B2 B3 B4 BS B6 B7 B3 BS8a B9 B10 BIl BI2
Central Wavelength (nm) 443 490 560 665 705 740 783 842 865 945 1380 1610 2190
Bandwidth (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
GSD (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

= B10 (recording only the cirrus information) is for atmospheric correction;
— Different spectral bands have different spatial resolutions.

Sentinel-2 data provide multi-spectral multi-resolution images, whose analysis would
not be very effective due to the lack of complete spectral patterns. J

@ No pixel...conventional imaging theory is no longer applicable...

17 /40



Problem Statement

(a) Crop

(b) Coastal

(c) Mountainous

If we can super-resolve all the
low/medium-resolution bands to
achieve 10m spatial resolution,
we can facilitate many practical
applications:

(a) agricultural monitoring,
(b) coastal line observation,
(c) mountainous area modeling,
(d) urban area development.
As aforementioned, data fusion,
deep learning and conventional

CV theory are not applicable.
Any novel SISR theory?

Mathematical tools:

© BCCB Matrix
(Unsupervised) Fitting;

@ Convex Self-similarity
(Graph) Regularization;

© Large-scale Optimization.
18 /40



Importance of Sentinel-2 Satellite

@ Worldwide applications in
military, precision agriculture,
land mapping/classification,
etc., across various land
covers (crop, coastal,
mountainous, unban areas).
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@ However, lacking of pixel
makes related analysis very (a) crop area, (b) coastal area, (c) mountainous area, and (d) urban area.

difficult.

Fig. True-color composition of AVIRIS-simulated Sentinel-2 data set for
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Challenges in Sentinel-2 Super-resolution

@ Conventional model-based theory? No pixels...
@ Conventional leaning-based theory? No big data...

@ Developing novel methods is inevitable:
o Low-rank modeling (pixel basis)
o Unsupervised learning (and single data)

o Other math tools:
@ Explicit definition of self-similarity

@ BCCB matrix theory
© Very large-scale optimization—ADMM

20 /40



Kronecker Modeling of Sentinel-2 Data

@ Sentinel-2 has ¢ = 12 spectral bands, including /1 = 4 10m bands, {3 =6
20m bands, and /s = 2 60m bands.

@ Their upsampling factors are r1 = 1, ro = 2, and rg = 6, respectively.
@ n;: #(pixels) in the band with upsampling factor r;, Vi € {1,2,6}.

@ The target image X € R“*" (i.e., super-resolved Sentinel-2 images)
contains n £ r2n; high-resolution pixels.

o Let xp € R™ be the vectorized image of the bth band of X.
o Letz = [zT,... 2]|T e R,
@ (Inconvenient) Let Y, € R"1*™42 (n; 1n; 2 = n;) be the bth band of Y.
@ (Convenient) Insert zeros to Y3, making the number of pixels also 7, i.e.,
w2 vec(Ys @ (e (e]")") € R".
So, the data can be represented as y = [y{,...,y; |" € R™.

21/40



Kronecker Modeling of Sentinel-2 Data

@ The forward model:
y=MBx+n, (2)

o M € R is block diagonal with bth diagonal block being the
downsampling matrix of band b, i.e., M = MJ @ M, where

M1 T n Jry @ (e(m)(egm))T) € R”llxn/l, and
My 2 Ly, @ (ef(ef)T) € RrxmS,
o B c R™* s also block diagonal with bth diagonal block being a
block-circulant-circulant-block (BCCB) matrix, i.e.,
B, = (F,, ® 177,/1)}12](an2 @ F,r), for spatially invariant blurring of

band b (a 2D cyclic convolution associated with the point spread
function (PSF) of band b).

e X is diagonal with the diagonal vector being the vectorized version of
the 2D DFT of the n) x n) convolution/blurring kernel.

@ Sentinel-2 super-resolution: to recover x from y.

22 /40



Problem Formulation

@ To recover = from vy, the data-fitting is naturally min, ||y — M Bz||?.

@ To handle the ill-posed inverse problem, we propose two strategies:

@ Low-rank modeling

o More than 99% of the signal energy of the 12-bands Sentinel-2

image is retained in the p = 5 principal components.
o Therefore, we can write [¢1,...,z,]” = UZ, or equivalently

x = (U I,)vec(Z"), (3)

for some full column rank U € R**P. Z is termed eigenimage.
@ Regularization

e From (2) and (3), a regularized criterion is proposed:

1
min 2|y = MB(U @ In)2|[3 + Aé(2), (4)

where z £ vec(Z7), A > 0, and ¢ is a regularizer to further
mitigate the ill-posedness.

23 /40



Self-similarity Regularization

@ As some spatial information is
missing (e.g., blurring), just
find other spatial information
as a compensation!

@ Self-similarity: An important
spatial structural information
commonly observed in natural
images, including RGB, SAR,
MRI, multispectral,
hyperspectral images, etc.

@ No explicit definition...

@ Plug-and-play in machine
learning has no convergence
guarantee...

Fig. True-color composition of AVIRIS-simulated Sentinel-2 data set for
(a) crop area, (b) coastal area, (c) mountainous area, and (d) urban area.
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Unsupervised Learning: Explicit, Convex and

Scene-adapted Self-similarity Regularizer

@ Self-similarity: existence of similar patches at different locations in a given image
(critical prior information for the ill-posed inverse problem).

@ A widely observed phenomenon in natural images, including optical and radar
images [Zhao'14], [Deledalle’14], but there is no explicit mathematical definition.

@ For the first time, we define it as a convex regularization function of the
eigenimage z:

¢(Z) £ %Z Z Qi g ||Pizb — EZ{;H% (5)

b=1 (i,j)eK

Why convexity? (fast software with convergence guarantee) J

@ The self-similarity graph K is scene-adapted (i.e., automatically learned from the
Sentinel-2 image itself), rather than fixed (cf. TV regularization).

@ How to unsupervisedly learn the self-similarity pattern (K, v ;)7

[Zhao'14] Y. Zhao et al., “Hyperspectral imagery superresolution by spatial-spectral joint nonlocal similarity,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2014.
[Deledalle’14] C.-A. Deledalle et al., “Exploiting patch similarity for SAR image processing: the nonlocal paradigm,” IEEE

Signal Processing Magazine, vol. 31, no. 4, pp. 69-78, 2014. 25 /40
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Regularizer using Self-similarity Graph

@ GSP: a newly emerged area in
signal processing community for
natural language understanding.

@ We explicitly define self-similarity
as a “weighted” graph K:

@ vertex: patch;

o edge: connecting similar
patches;

o weight: similarity measure
Qg 5 Z 0.

The graph is transformed into the
aforementioned convex algebra (5),
allowing the adoption of
distributed optimization theory
with convergence guarantee.
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Convex Criterion for Sentinel-2 SISR

Convex Optimization
for Signal Processing
and Communications

From Fundamentals to Applications

Chong-Yung-Chi - Wei-Chiang Li - Chia-Hsiang Lin
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BCCB structure of -
blurring matrix B

@ A convex criterion has been designed as follows:

. |ly — MBwv|3
2?513% + Z aij|(P: — Py)Vi |7
g (3,4)EK

st. v=(U® I,)z,
Vij=2",9(i,j) €K,

@ The acquired Sentinel-2 image y is modeled as
the blurred (B) and downsampled (M) version
of the super-resolved image v — data fidelity!

@ U: feature subspace (also automatically learned).

A large-scale optimization with BCCB structure. )
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The S4 Software

@ The BCCB structure is employed to design fast algorithm behind our software:

Scene-adapted Self-similarity regularized Sentinel-2 Super-resolution algorithm!

Algorithm 1

[

w

w

© ®

Given (M,B,U,y). (K,a;;). A >0and p > 0.
Initialize 20 := Opn. d° = 0y,. D?J = Opxp (or warm
start). Set k:=0.

- repeat

Update v‘ ! {VA+l €
argmin, (v, E(v {Vij} = (1“ {Df:l}):

Update

k1 € argmin, £ (vFt!, {VH'I} z,d* { D} ]}):
Update d**! := dF 4+ o*t! — (U 2 In)zFt and
DA+1 = DF, +Vk+l — (ZF)T,

k —k 1:

- until the predefined stopping criterion is met.

Output  the supellesol\'ed Sentinel-2 image T =

\P(‘(XT = (U ® I,)z* (cf. @)).

Theorem 1 Consider any graph K C {(i,j) | i,j € In, i #
j} and a;j > 0, ¥(i,j) € K, where N is the number of
patches. The sequence {z*} generated by Algorithm (I} con-
verges to an optimal solution of the self-similarity regularized
problem.

1. Closed-form solutions are derived for all the algorithmic steps = fast!

. Theoretical guarantee of convergence to global optimum of our learning criterion!

28 /40



S4: High-dimensional Matrix Inversion | —

e (Line 4 in Algorithm)

vftl e argmin%”y — MBv|3+ %H(U @ I,)2" —v — d*||3, (123)

A
2

V;‘;‘l € arg min
; Vii

. 7 3 .
I(P: = Py)Visli7 + 51(Z")" = Vij — DEj17- (124)

L. (Solution for (123))  vf*! = (Bf M MyBy, + uI,,) " (B My, + pwy). |inversion of a huge n x n matrix

Proposition 5 Let M' 2 I, ® (eY’(eY))T) €RY*" | and F,, € C¥*' be the DFT matriz. Then,

1
FuM'FY = FIM'F, = ~(e L) AT @ L)),

Proposition 6 The following identity holds true for matrices with proper dimensionality:

(A+UBV) ' =A"'— A"'UB '+ VA 'U)"'VA~!. Woodbury matrix inversion lemma

BT MIM,B, = FISHF(M, @ M,)FISF = FHZH(FH/ZJ\IQF,Z ® Fy MlF,{{)zF
= F”):”DT%DHXF,
) : -1
(BE M MyBy + puI,) ! :11n - %F”):”D (rfzn‘ + l1)”\):2|D) DY3F.
7 Iz 7

Remarkably, (r?lnl + %DH\ZQ\D) is diagonal (making its inversion easily computable).

Fact 2 (a) If each row of Ay, (k € {1,2}) has mazimally one nonzero entry, then each row
of A1 ® A2 also has mazimally one nonzero entry.
(b) If Ay is diagonal, and each row of Ay has mazimally one nonzero entry, then

AgAlAg must be diagonal.
29 /40




S4: High-dimensional Matrix Inversion Il —

X 1 . . e
ol e argmin 7|\y — MBvl3 + %’H(U ® I,)zF — v — d*|3, (123)

A

e (Line 4 in Algorithm)

V,kJ'1 arg mm

“||(Pi - Py)Viglli + 5 II(Z*) —Vij— DIl (124)

2. (Solution for (124)) Let v;c]) be the cth column of ij“. Then, (124) can be decoupled:

LA c
min 2 (P — Py)v{ |3 + 1ol - 6713 (130)

where 6}3) denotes the cth column of (Zk)T _ D:»:J, |iu\'(‘rsiou of a huge n x n nerix'

— Note that since (P; — P;) € R xn (the patch size is typically set as ¢ x ¢ =6 x 6),

— (P, — P;) € R¥*" s actually a column-sparse matrix. Then, we can reformulate (130) as

Aa; j

e Pl 1zl + Sz - 61213 + S0z - 81213, (131)
Vi Vi T

— A computationally efficient closed-form solution is hence obtained as follows:

u[J(C)]z>

c ;LII
i1t = | (P~ BEIP — Pl + (M
]

{5 = 61z

— Note that we now only need to compute thelinverse of a small |Z| x |Z| matrixlwith 7| < 242
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S4: High-dimensional Matrix Inversion Il —

(p =5, n = 432 x 108 = 46656)

e (Line 5 in Algorithm 11)

The problem can be first simplified as

2k+1 6argmm||(U\»jIn)z—v —d*|3 + Z HZT—V;?'I—
(i.3)eK

DEj|1%. (132)

— Both terms are quadratic terms of z. By defining ¥o £ (U ® I,)T(U @ I,) + |K|Ipn
and ¥y £ Y(ig)ex (V’Hl + D’c ) the closed-form solution of (132) can be derived as

+ o gyl [(U ® L)T (0" + d*) + vec (\I’Q)] . (133)

— We do not need to compute \Ilal € RPxpm, |in\'0rsiun of a huge pnxpn mmrixl

— By further defining ¥, £ vec;!,(v¥*+! + d*) U, the closed-form solution (133) can be
refined as

2 = 5t (U @ L) (05 + ) + vee (W)

= vec (('111 +0y) (UTU + \K\Ip)_l) . (134)

— Note that (134) is much more computationally efficient than (133) as the involved matrix
inversion associates with ajmuch smaller p x p matrix.|
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Experimental Setting

@ Datasets:
1. real Sentinel-2 dataset: 4 most commonly studied scenes (corresponding to
the 4 aforementioned applications: agricultural monitoring, coastal line
observation, mountainous area modeling, urban area development),

2. synthetic dataset: for performance comparison only.

@ Key peer methods:
1. area-to-point regression kriging (ATPRK) [Wang'16],
2. multi-resolution sharpening approach (MUSA) [Paris’18].

@ Performance measures:
1. spectral angle mapper (SAM) € [—m, «r] (the smaller, the better),
2. root-mean-square error (RMSE) € [0, c0) (the smaller, the better),
3. signal-to-reconstruction error (SRE) € (—o0, 00) (the larger, the better),
4. universal image quality index (UIQI) € [—1,1] (the larger, the better),
measuring spectral distortion, loss of correlation, luminance distortion and contrast
distortion.

[Wang'16] Q. Wang et al., “Fusion of Sentinel-2 images,” Remote Sensing of Environment, 2016.
[Paris’18] C. Paris et al., “A novel sharpening approach for super-resolving multi-resolution optical images,” IEEE Trans.

Geoscience and Remote Sensing, 2018.
32 /40



Real Sentinel-2 Data 1: Mountainous Area

@ (True color composition — 10m) B4(red) 4+ B3(green) + B2(blue) [ref. image]
@ (False color composition — 20m) B5+B6+B7 & B8a+Bl11+B12
@ (False color composition — 60m) B1+B9

(a) RGB (10m) (b) B1-9 (60m) (c)B1-9(SR) (d) B5-6-7 (20m) (e)B5-6-7(SR)  (f)B8a-11-12(20m) (g) B8a-11-12(SR)




Real Sentinel-2 Data 2: Coastal Area

@ (True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]
@ (False color composition — 20m) B5+B6+B7 & B8a+B11+B12
o

(False color composition — 60m) B1+B9

(a) RGB (10m) (b) B1-9 (60m) (c) B1-9 (SR) (d)BS-6-7 (20m)  (e)B5-6-7 (SR)  (f)B8a-11-12(20m) (g)B8a-11-12 (SR)




Real Sentinel-2 Data 3: Crop Area

@ (True color composition — 10m) B4(red) + B3(green) + B2(blue) [ref. image]
@ (False color composition — 20m) B5+B6+B7 & B8a+B11+B12
@ (False color composition — 60m) B1+B9

(a) RGB (10m) (b) B1-9 (60m) (c)B1-9 (SR) (d) B5-6-7 (20m) (e)B5-6-7(SR)  (f)B8a-11-12(20m) (g) B8a-11-12(SR)




Real Sentinel-2 Data 4: Urban Area

@ (True color composition — 10m) B4(red) + B3(green) 4+ B2(blue) [ref. image]
@ (False color composition — 20m) B5+B6+B7 & B8a+B11+B12
o

(False color composition — 60m) B1+B9

(a) RGB (10m) (b) B1-9 (60m) (c)B1-9 (SR) (d)BS-6-7 (20m)  (e)B5-6-7 (SR)  (f)B8a-11-12(20m) (g)B8a-11-12 (SR)




Quntitative Comparison on Synthetic Data

Our S4 software:

- best spectral property (joint learning) — key to multi-resolution analysis,

- best global accuracy (or close to the best),

- much faster than key competitors.

Datasets Methods SAM (degree) RMSE SRE (dB) UIQI T (sec.)
MUSA 0.9518 55.5026 32.6243 0.9853 501.13

Crop Dataset ATPRK 1.2341 71.8985 31.5727 0.9819 226.32
DSen2 2.4042 139.5301 28.2986 0.9442 10.08

S2Sharp 1.9193 152.2005 26.9332 0.9530 20.78

SSSS 0.8040 50.0046 33.1973 0.9864 100.05

MUSA 1.8156 24.7417 27.9673 0.9377 455.17

Coastal Dataset ATPRK 1.8678 21.1794 28.9295 0.9214 222.48
DSen2 4.5553 5471 18.5766 0.9161 10.23

S2Sharp 2.3934 47.7705 18.3089 0.9191 20.42

SSSS 1.1622 18.0857 29.3141 0.9317 105.83

MUSA 1.0779 17.6223 31.3936 0.9915 400.62

Mountainous Dataset ATPRK 1.7754 25.63(:)3 29.0110 226.90
DSen2 2.7074 48.3057 19.1132 10.20

S2Sharp 2.4254 51.5264 19.0960 22.46

SSSS 1.0478 17.1165 31.6545 97.99

MUSA 1.5680 54.8530 425.72

ATPRK 1.6179 47.1817 222.04
Urban Dataset DSen2 2.8366 108.9142 9.77
S2Sharp 2.5630 102.3011 24.13

SSSS 1.0553 35.4103 101.72
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@ ESA'’s Sentinel-2 satellite is important for various Earth observation missions, but
effective analysis is hampered by its multi-resolution nature (10/20/60 meters).

@ Super-resolving the 20/60m bands to achieve 10m resolution is desired, and our
S4 software achieves so by incorporating the self-similarity prior info. (to
compensate the loss of spatial info.) into a convex optimization framework.

@ S4 is capable of reconstructing spatial details in various scenes,
while preserving spectral characteristics, with source codes released
on |EEE Code Ocean and my website (cf. QR Code).

Thank You for Your Attention.
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Special thanks to my first batch of students!

My First Batch of Students:

\"4 ,
i“u

Tzu-Hsuan Lin Cheng-Yu Sie Yen-Cheng Lin Chi-Hung Kao Po-Wei Tang Yangrui Liu
1 WANT YOU
FOR U.S.ARMY
Jhao-Ting Lin Man-Chun Chu Zi-Chao Leng Yi-Hsun Lee Pang-Yu Lin Recruiting.

(Postdoc, RA, etc.)

%E/%ﬁﬁ%~

Thank You for Your Attention.
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Discussion Time

Q&A

“No Magic, Only Basic.”
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