National Cheng Kung University

Faculty
Name Ray-Bing Chen
Job title Professor, Vice Dean of MiinWu School of Computing
Expertise Statistical Modeling, Statistical Computing, Experimental Designs, Independent Component Analysis
E-mail rbchen@ncku.edu.tw
Office Room 62441, 4th Floor, Department of Statistics
Tel (06)2757575~53645
Web site https://sites.google.com/view/ray-bingchenswebsite/home
Main Experiences
  • Chairman, Department of Statistics, College of Management, Natioanl Cheng Kung University. (August 1, 2019 - Present).
  • Professor, Department of Statistics, College of Management, Natioanl Cheng Kung University. (August 1, 2013 - Present).
  • Director, Institutional Research Division, Office of Research and Development, National Cheng Kung University. (May 1, 2018 - July 31, 2019).
  • Associate Professor, Department of Statistics, College of Management, National ChengKung University. (February 2011 - July 2013).
  • Director, Institute of Statistics, National University of Kaohsiung. (August 2008 - January2011).
  • Association Professor, Institute of Statistics, National University of Kaohsiung. (February 2008 - January 2011).
  • Assistant Professor, Institute of Statistics, National University of Kaohsiung. (August 2003 -February 2008).
Education
  • PhD, University of California, Los Angeles, 2003. Major: Statistics
  • MS, University of California, Los Angeles, 2001. Major: Statistics
  • MS, National Sun Yat-sen University, 1996. Major: Applied Mathematics
  • BS, National Sun Yat-sen University, 1994. Major: Applied Mathematics
Research Field
  • Statistical Modeling in Computer Experiments and Related Experimental Desgins
  • Small n and Large p Variable Selection Approach
  • Independent Component Analysis
  • Optimal Designs
Journals
  1. Determination of correlations in multivariate longitudinal data with modified Cholesky and hypersphere decomposition using Bayesian variable selection approach
    Lee, K. J., Chen, R. B., Kwak, M. S. & Lee, K., 2021 二月 20, 於: Statistics in Medicine. 40, 4, p. 978-997 20 p.
  2. A review of Bayesian group selection approaches for linear regression models
    Lai, W. T. & Chen, R. B., 2020, (Accepted/In press) 於: Wiley Interdisciplinary Reviews: Computational Statistics.
  3. Finding optimal points for expensive functions using adaptive RBF-based surrogate model via uncertainty quantification
    Chen, R. B., Wang, Y. & Wu, C. F. J., 2020 八月 1, 於: Journal of Global Optimization. 77, 4, p. 919-948 30 p.
  4. Huber-type principal expectile component analysis
    Lin, L. C., Chen, R. B., Huang, M. N. L. & Guo, M., 2020 十一月, 於: Computational Statistics and Data Analysis. 151, 106992.
  5. Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions
    Chen, R. B., Chen, P. Y., Hsu, C. L. & Wong, W. K., 2020 十月, 於: PloS one. 15, 10 October, e0239864.
  6. Active learning with simultaneous subject and variable selections
    Ivan Chang, Y. C. & Chen, R-B., 2019 二月 15, 於 : Neurocomputing. 329, p. 495-505 11 p.

  7. Bayesian structure selection for vector autoregression model
    Chu, C. H., Lo Huang, M. N., Huang, S. F. & Chen, R-B., 2019 八月 1, 於 : Journal of Forecasting. 38, 5, p. 422-439 18 p.

  8. Bayesian variable selection in a finite mixture of linear mixed-effects models
    Lee, K-J. & Chen, R-B., 2019 九月 2, 於 : Journal of Statistical Computation and Simulation. 89, 13, p. 2434-2453 20 p.

  9. Greedy active learning algorithm for logistic regression models
    Hsu, H. L., Chang, Y. C. I. & Chen, R-B., 2019 一月 1, 於 : Computational Statistics and Data Analysis. 129, p. 119-134 16 p.

  10. Optimal Noncollapsing Space-Filling Designs for Irregular Experimental Regions
    Chen, R-B., Li, C. H., Hung, Y. & Wang, W., 2019 一月 2, 於 : Journal of Computational and Graphical Statistics. 28, 1, p. 74-91 18 p.

  11. Sparse-Group Independent Component Analysis with application to yield curves prediction
    Chen, Y., Niu, L., Chen, R-B. & He, Q., 2019 五月 1, 於 : Computational Statistics and Data Analysis. 133, p. 76-89 14 p.

  12. Optimizing two-level orthogonal arrays for simultaneously estimating main effects and pre-specified two-factor interactions
    Chen, P. Y., Chen, R. B. & Lin, C. D., 2018 二月, 於 : Computational Statistics and Data Analysis. 118, p. 84-97 14 p.

  13. Recognizing spatial and temporal clustering patterns of dengue outbreaks in Taiwan
    Lai, W. T., Chen, C. H., Hung, H., Chen, R. B., Shete, S. & Wu, C. C., 2018 六月 4, 於 : BMC infectious diseases. 18, 1, 256.

  14. Surrogate-assisted tuning for computer experiments with qualitative and quantitative parameters
    Chen, J. K., Chen, R-B., Fujii, A., Suda, R. & Wang, W., 2018 四月, 於 : Statistica Sinica. 28, 2, p. 761-789 29 p.

  15. Fast Bayesian variable screenings for binary response regressions with small sample size
    Chang, S. M., Tzeng, J. Y. & Chen, R. B., 2017 九月 22, 於 : Journal of Statistical Computation and Simulation. 87, 14, p. 2708-2723 16 p.

  16. On the Determinants of the 2008 Financial Crisis: A Bayesian Approach to the Selection of Groups and Variables
    Chen, R. B., Chen, Y. C., Chu, C. H. & Lee, K. J., 2017 十二月 20, 於 : Studies in Nonlinear Dynamics and Econometrics. 21, 5, 20160107.

  17. Sequential Designs Based on Bayesian Uncertainty Quantification in Sparse Representation Surrogate Modeling
    Chen, R. B., Wang, W. & Wu, C. F. J., 2017 四月 3, 於 : Technometrics. 59, 2, p. 139-152 14 p.

  18. Standardized maximim D-optimal designs for enzyme kinetic inhibition models
    Chen, P. Y., Chen, R. B., Tung, H. C. & Wong, W. K., 2017 十月 15, 於 : Chemometrics and Intelligent Laboratory Systems. 169, p. 79-86 8 p.

  19. Bayesian Sparse Group Selection
    Chen, R. B., Chu, C. H., Yuan, S. & Wu, Y. N., 2016 七月 2, 於 : Journal of Computational and Graphical Statistics. 25, 3, p. 665-683 19 p.

  20. Bayesian variable selection for finite mixture model of linear regressions
    Lee, K. J., Chen, R. B. & Wu, Y. N., 2016 三月 1, 於 : Computational Statistics and Data Analysis. 95, p. 1-16 16 p.

  21. Bayesian Variable Selections for Probit Models with Componentwise Gibbs Samplers
    Chang, S. M., Chen, R. B. & Chi, Y., 2016 九月 13, 於 : Communications in Statistics: Simulation and Computation. 45, 8, p. 2752-2766 15 p.

  22. Optimizing two-level supersaturated designs using swarm intelligence techniques
    Phoa, F. K. H., Chen, R. B., Wang, W. & Wong, W. K., 2016 一月 2, 於 : Technometrics. 58, 1, p. 43-49 7 p.

  23. A modified Particle Swarm Optimization technique for finding optimal designs for mixture models
    Wong, W. K., Chen, R. B., Huang, C. C. & Wang, W., 2015 六月 19, 於 : PloS one. 10, 6, e0124720.

  24. A Note on Conditionally Optimal Star Points in Central Composite Designs for Response Surface Methodology
    Chen, R-B. & Lin, D. K. J., 2015, 於 : Journal of the Chinese Statistical Association. 53, p. 145-157

  25. BSGS: Bayesian sparse group selection
    Lee, K-J. & Chen, R-B., 2015 一月 1, 於 : R Journal. 7, 2, p. 122-133 12 p.

  26. Minimax optimal designs via particle swarm optimization methods
    Chen, R. B., Chang, S. P., Wang, W., Tung, H. C. & Wong, W. K., 2015 九月 3, 於 : Statistics and Computing. 25, 5, p. 975-988 14 p.

  27. Adaptive block size for dense QR factorization in hybrid CPU-GPU systems via statistical modeling
    Chen, R-B., Tsai, Y. M. & Wang, W., 2014 一月 1, 於 : Parallel Computing. 40, 5-6, p. 70-85 16 p.

  28. Bayesian variable selection for multi-response linear regression
    Chen, W. P., Wu, Y. N. & Chen, R-B., 2014 一月 1, 於 : Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8916, p. 74-88 15 p.

  29. COPICA—independent component analysis via copula techniques
    Chen, R-B., Guo, M., Härdle, W. K. & Huang, S. F., 2014 一月 1, 於 : Statistics and Computing. 25, 2, p. 273-288 16 p.

  30. Discrete particle swarm optimization for constructing uniform design on irregular regions
    Chen, R. B., Hsu, Y. W., Hung, Y. & Wang, W., 2014 四月 1, 於 : Computational Statistics and Data Analysis. 72, p. 282-297 16 p.

  31. TVICA - Time varying independent component analysis and its application to financial data
    Chen, R-B., Chen, Y. & Härdle, W. K., 2014 六月 1, 於 : Computational Statistics and Data Analysis. 74, p. 95-109 15 p.

  32. Using animal instincts to design efficient biomedical studies via particle swarm optimization
    Qiu, J., Chen, R. B., Wang, W. & Wong, W. K., 2014 一月 1, 於 : Swarm and Evolutionary Computation. 18, p. 1-10 10 p.

  33. Contour estimation via two fidelity computer simulators under limited resources
    Chen, R-B., Hung, Y. C., Wang, W. & Yen, S. W., 2013 八月 1, 於 : Computational Statistics. 28, 4, p. 1813-1834 22 p.

  34. Optimizing Latin hypercube designs by particle swarm
    Chen, R-B., Hsieh, D. N., Hung, Y. & Wang, W., 2013 九月 1, 於 : Statistics and Computing. 23, 5, p. 663-676 14 p.

  35. Screening procedure for supersaturated designs using a Bayesian variable selection method
    Chen, R. B., Weng, J. Z. & Chu, C. H., 2013 二月 1, 於 : Quality and Reliability Engineering International. 29, 1, p. 89-101 13 p.

  36. Tuning block size for QR factorization on CPU-GPU hybrid systems
    Tsai, Y. M., Wang, W. & Chen, R-B., 2012 十二月 1, p. 205-211. 7 p.

  37. Building surrogates with overcomplete bases in computer experiments with applications to bistable laser diodes
    Chen, R. B., Wang, W. & Wu, C. F. J., 2011 一月 1, 於 : IIE Transactions (Institute of Industrial Engineers). 43, 1, p. 39-53 15 p.

  38. Stochastic matching pursuit for Bayesian variable selection
    Chen, R-B., Chu, C. H., Lai, T. Y. & Wu, Y. N., 2011 一月 1, 於 : Statistics and Computing. 21, 2, p. 247-259 13 p.

  39. Using adaptive multi-accurate function evaluations in a surrogate-assisted method for computer experiments
    Wang, W., Chen, R-B. & Hsu, C. L., 2011 三月 15, 於 : Journal of Computational and Applied Mathematics. 235, 10, p. 3151-3162 12 p.

  40. Exact D-optimal designs for a second-order response surface model on a circle with qualitative factors
    Huang, M. N. L., Lee, C. P., Chen, R-B. & Klein, T., 2010 二月 1, 於 : Computational Statistics and Data Analysis. 54, 2, p. 516-530 15 p.

  41. Conditional Optimal Small Composite Designs
    Chen, R-B., Tsai, Y-J. & Lin, D. K. J., 2008, 於 : Journal of Statistics and Applications. p. 35-56

  42. Finding effective points by surrogate models with overcomplete bases
    Wang, W. & Chen, R-B., 2008 七月 15, 於 : Journal of Computational and Applied Mathematics. 217, 1, p. 110-122 13 p.

  43. Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model
    Chen, R-B., Wong, W. K. & Li, K. Y., 2008 九月 15, 於 : Statistics and Probability Letters. 78, 13, p. 1914-1921 8 p.

  44. A null space method for over-complete blind source separation
    Chen, R. B. & Wu, Y. N., 2007 八月 15, 於 : Computational Statistics and Data Analysis. 51, 12, p. 5519-5536 18 p.

  45. Optimal designs for parallel models with correlated responses
    Huang, M. N. L., Chen, R-B., Lin, C. S. & Wong, W. K., 2006 一月 1, 於 : Statistica Sinica. 16, 1, p. 121-133 13 p.

  46. c-optimal designs for weighted polynomial models
    Huang, M. N. L., Chen, R. B. & Chen, Y. Y., 2005 十二月 1, 於 : Sankhya: The Indian Journal of Statistics. 67, 1, p. 90-105 16 p.

  47. Exact D-optimal designs for weighted polynomial regression model
    Chen, R-B. & Huang, M. N. L., 2000 四月 28, 於 : Computational Statistics and Data Analysis. 33, 2, p. 137-149 13 p.

獎勵榮譽
  • 成功大學管理學院102學年度研究優良教師
  • 成功大學102學年度教學優良教師
  • The 2016 Conference on Technologies and Applications of Artificial Intelligence(TAAI 2016) Best Paper Awards (Domestic Track)
  • 科技部優秀年輕學者研究計畫2016-2018